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ABSTRACT
Data, algorithms, and compute/storage infrastructure are
key assets that drive data science and artificial intelligence
applications. As providing all these assets requires a huge
investment, data science and artificial intelligence technolo-
gies are currently dominated by a small number of providers
who can afford these investments. This leads to lock-in ef-
fects and hinders features that require a flexible exchange of
assets among users.

In this vision paper, we present Agora, a unified asset
ecosystem. The Agora system provides the technical in-
frastructure that allows for offering and using data and
algorithms, as well as physical infrastructure components.
Agora is designed as an open ecosystem of asset market-
places and provides to a broad audience not only data but
the entire data value chain (including computational re-
sources and human expertise). Agora (i) leverages a fine-
grained exchange of assets, (ii) allows for combining assets
to novel applications, and (iii) flexibly executes such ap-
plications on available resources. As a result, Agora over-
comes lock-in effects and removes entry barriers for new
asset providers. In contrast to existing data management
systems, Agora operates in a heavily decentralized and dy-
namic environment: Data, algorithms, and even compute
resources are dynamically created, modified, and removed
by different stakeholders. Agora presents novel research di-
rections for the data management community as a whole:
It requires to combine our traditional expertise in scalable
data processing and management with infrastructure provi-
sioning as well as economic and application aspects of data,
algorithms, and infrastructure.
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1. INTRODUCTION
The ongoing digitalization has a profound impact on in-

dustry, science, and society as a whole. The access to data
as well as to data science (DS) technology constitute a crit-
ical point of control: Wide access to both of them is crucial
for economic success and scientific progress, promoting a
new data-centric economy [30]. Nowadays, business lead-
ers talk about the fourth industrial revolution [82]. The
fourth paradigm of data-intensive scientific discovery facili-
tates new insights through the analysis of large datasets that
are generated from modern scientific experiments [40].

Data has become a fundamental factor of production. In
contrast to natural resources like oil, data can be exploited
infinitely. It can be repeatedly curated and analyzed with
DS technologies to produce new insights and solve problems
in a more efficient way. Data together with DS technologies
are competitive differentiators in the data economy. Com-
panies that are proficient at utilizing them grow faster and
perform better than their competitors [88]. As a result, the
data economy is quickly developing a strong dependency on
a small number of DS proficient companies. This implicitly
causes lock-in effects on customers, which, in turn, might
cause customers to use suboptimal solutions or even to not
have a solution at all.

1.1 Towards a Unified Asset Ecosystem
As data and DS technologies production factors, it is clear

that they must be accessible by everyone. In fact, the
database community has recently recognized that remov-
ing such lock-in effects will significantly benefit all users [1].
Academia and industry have made progress towards this
goal by providing access to data [20, 43, 62], AI algo-
rithms [2, 5, 9, 54], expertise (services) [28, 79], or com-
putational resources [27]. However, the users still require
significant expertise to combine all these data-related as-
sets (assets, for short) from different marketplaces and cloud
providers. For instance, a social scientist, who has no exper-
tise in DS techniques and does not own any data, can hardly
validate her assumptions about a social phenomenon, even
if the required data and technology exists. We thus need
an ecosystem that provides unified access to all types of as-
sets: (i) high-quality data, (ii) state-of-the-art DS technol-
ogy and expertise, and (iii) compute and storage resources.
The treatment of these types of assets in a uniform and sys-
tematic way allows for easy creation and composition of data
science pipelines, both with respect to the algorithmic and
data specification as well as its scalable execution.
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Figure 1: Motivating examples: Bob, Alice, and Charlie use Agora to discover assets, improve them, and contribute them
back to the ecosystem. Agora also provides the infrastructure to optimize and run these assets (e.g., in the case of Charlie).

1.2 Our Vision: The Agora Ecosystem
We envision Agora, an ecosystem that brings together as-

set providers and consumers to solve data-related problems
using DS. Agora allows providers to offer any type of assets
(e.g., data, algorithms, software, computational resources,
human expertise) to a broader audience. Also, it enables
both the experts and the non-expert users to gain insights
or enhance their businesses by combining and using the as-
sets. Ultimately, Agora aims at providing access not only to
data sources but to the entire data value chain.

We envision this ecosystem as a two-layer abstraction: the
asset layer and the execution layer. The asset layer is com-
posed of a set of marketplaces where providers and con-
sumers can exchange assets. The execution layer provides
the means to users to run their tasks (composition of assets)
in Agora instead of using their own computing infrastruc-
ture. The key aspect of Agora is the fine-grained exchange of
any asset. Each type of assets corresponds to a specialization
of the provider, leading to different user roles. Agora hides
the complexity of each role. For example, (i) a researcher
can subscribe to a stream of events without knowing any
detail about the infrastructure that captures those events;
(ii) a company can acquire a classification pipeline without
understanding the details of all involved algorithms; (iii) re-
searchers and companies can book a stream processing clus-
ter with uptime guarantees without having any knowledge
on cluster operations; and (iv) system operators can focus
on cluster monitoring and maintenance without knowing any
detail about the tasks running on top of the cluster.

Overall, we see Agora as an umbrella system, which unites
all pieces of data management research in an open and col-
laborative ecosystem. We, thus, believe that the database
community should drive the realization of this vision.

1.3 Motivating Examples
Imagine Bob, a freelance data scientist, who wants to cre-

ate a machine learning (ML) model for real-estate price fore-
casting in Berlin. His dataset is missing the criminality rate
of each area, which he knows also affects the prices. He, thus,
goes to Agora to find data about the crime rates in Berlin 1 .
He finds the data, augments his initial dataset with this fea-
ture 2 , and builds an ML model using the elastic-net al-
gorithm 3 . He then decides to provide his composed asset
in Agora 4 . Bob’s asset consists of the ‘real-estate-pricing’
dataset for Berlin and the elastic-net algorithm to estimate

a potential price of apartments.
Alice, another data scientist, finds Bob’s asset in Agora 1

and decides to improve it 2 . She enriches the original ‘real-
estate-pricing’ dataset with several feature engineering tech-
niques, adds the ‘linear-regression’ algorithm for prediction,
and contributes it back to Agora to gain some revenue 3 .

Charlie, a consumer who is looking for a real-estate pric-
ing predictor, queries Agora for available assets on price
forecasting that yield the average error rate below 5,000 eu-
ros 1 . As he does not have the infrastructure to run assets
in his home, he decides to use Agora to also execute his dis-
covered assets (e.g., train the ML pipelines he has found) 2 .
Although he wants to complete the training as fast as pos-
sible, his budget is limited. To overcome his budget limi-
tation, Agora replaces the linear regression algorithm by a
logically equivalent neural network that achieves better per-
formance. Next, Agora decides to run the resulting asset on
an execution node registered as an asset within Agora.

Allowing asset exchange in Agora leads to the following
main benefits:

(1) Secondary use of existing assets. Users can reuse
any (composed) asset (e.g., data and algorithms) offered in
Agora. In most cases, companies own a plethora of highly
valuable assets. However, as these assets are fragmented
across companies, their economical potential remains unused
as secondary asset usage is extremely rare. A fine-grained
asset sharing would allow for combining existing resources
to derive new insights and services.

(2) Leveraging specializations. Agora creates an ecosys-
tem of highly specialized providers who provide assets of a
very high quality. Such an ecosystem is comparable with
the automotive industry where many companies specialize
in certain parts (e.g., brakes, tires, or lights), which get com-
bined to one high-quality car. Specialized providers can only
operate efficiently if they can offer their assets without mas-
sive overhead. This enables small and medium-sized com-
panies to offer assets that they would not be able to bring
in the market otherwise. Agora, thus, allows consumers to
build complex applications by combining high-quality assets
from multiple providers.

(3) Hiding complexity. Agora hides the complexity and in-
tricacies of assets from the consumers. It is aware of logical
equivalence of assets, i.e., assets that yield the same results
(e.g., a nested loops join is equivalent with a hash join for
equi-joins). Implementations of logically equivalent assets
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can have very different properties: They may use different
programming languages (e.g., C++ and Java), be tailored
to different systems (e.g., Flink and Spark), be optimized
for specific hardware (e.g., CPU and GPU), and run in a
parallelized, distributed, or sequential setting. In addition,
each provider can define different pricing for her implemen-
tation. To optimize asset execution, Agora chooses the best
combination out of the available implementations based on
the requirements of the incoming task or application.

1.4 Requirements and Challenges
To see the Agora vision become a reality, we must fulfill

the following requirements: (i) asset sharing and discovering
– users should be able to easily provide or consume assets;
(ii) asset privacy and security – users must be able to set
privacy and security constraints to their assets; (iii) asset
interoperability – users should be able to easily combine dif-
ferent (types of) assets; (iv) asset equivalence – users should
be able to achieve their desired goals without being con-
cerned about the specifics of the underlying algorithms; and
(v) hardware independence – users should be able to run
their assets on heterogeneous hardware seamlessly.

Ultimately, Agora aims at consolidating information from
around the world and executing intelligent algorithms on
top of it. This is a formidable challenge that presents the
opportunity to integrate and advance database research in
many areas, from query compilation and processing to data
integration and mining, while dealing with asset heterogene-
ity, privacy, security, heterogeneous hardware, and novel
computer architectures. Realizing this vision comes with a
plethora of research questions, such as: How can we specify
highly heterogeneous assets in a unified way? Can we auto-
matically generate such a specification? How can we discover
and potentially compose highly heterogeneous assets to sat-
isfy a consumer’s request? What is the right pricing model
for each type of asset? How can we guarantee that for a
combination of assets every contributor gets paid? How can
we specify privacy and security constraints to assets? Can
we ensure a trusted environment for the execution of assets
having such constraints? Can we enable assets to run on
any computing resource of the asset ecosystem?

Outline. In the remainder of the paper, we first define an
asset and introduce the different kinds of assets in Agora in
Section 2. Next, in Section 3, we present the architecture
of and vision behind Agora. In Section 4, we point out
the research challenges and outline possible solutions. We
discuss related work in Section 5 and conclude in Section 6.

2. ASSETS IN AGORA
Before discussing the internals of Agora, let us first de-

fine assets as any data-related unit of production that allows
users to exploit the value of data. We identify six major cate-
gories of assets: data sources, algorithms, pipelines, systems,
storage and compute resources, and applications. In the fol-
lowing, we explain them as well as point out the providers’
and users’ incentives in each one of them:
(1) Data sources. These include raw data (e.g., rela-
tional data or graph data) as well as enriched or curated
data (e.g., knowledge graphs and ontologies). In addition,
data may be provided as data-at-rest (batch data) or data-
in-motion (streams). Agora provides the platform for spe-
cialized providers that offer high-quality data. Such data
providers can bring their data to the market and benefit

from respective revenues. Data users benefit from the avail-
able diverse, high-quality data.

(2) Algorithms. Efficient algorithm implementations are
core building blocks in data-driven applications provided by
developers. An algorithm implementation can be part of a
processing pipeline, system, or software tool. Typical ex-
amples include database operators, indices building, feature
extraction, and ML model training. Agora eases code reuse
as it enables secondary usage of implementations. For ex-
ample, the databases community presents several new join
algorithms at their leading conferences every year. However,
only few of the presented algorithms see a wide-spread adop-
tion mainly because it is hard for developers to sell/put their
algorithms in the market. Agora enables a plug-and-play so-
lution: any developer can offer a new join algorithm that is
logically equivalent to an existing one, but more resource
efficient or tailored for a specific hardware or system.

(3) Pipelines. Pipelines are a sequence of data sources
and algorithms that manipulate data towards a single goal.
The value of a pipeline lies in a ready-to-use combination
of such assets. For example, a pipeline can combine data
cleaning, feature extraction, and classification algorithms to
transform raw data into labeled events. Setting up a pipeline
of compatible algorithms is often a challenging task. Thus,
it is attractive to acquire a ready-to-use pipeline, which was
already tested in practice and received positive user rating,
instead of implementing a new pipeline from scratch.

(4) Systems. Typical systems are relational databases,
streaming engines, and ML systems. Each system may be
proprietary or open-source. With Agora, users get access
to different systems and can access them through one feder-
ated platform. This allows for testing different systems and
combinations with real workloads before making a decision
for production use. Moreover, users will find support and
operation services for each system. System providers can
offer their systems to a large number of customers without
the need for individual license negotiations. This makes it
easier to bring new systems to the market and to attract
users to use a system that is optimized for their workloads.

(5) Storage and compute. Agora accommodates storage
and compute nodes, which can be offered by cloud providers,
organizations, or individuals. Compute nodes can be virtual
machines or dedicated servers. Storage resources can be
main memory, disks, or network-attached storage. As there
are diverse providers, users gain access to diverse servers
with diverse hardware, can test different setups, and find the
optimal environment for their application. In this way users
avoid lock-in effects to a particular cloud provider because
they can easily switch between compute nodes. Users can
also benefit from accessing spare resources in a data center
that is close to their customers or sensors.

(6) Applications. An application consists of systems,
pipelines, algorithms, and, optionally, data sources and stor-
age/compute nodes to offer a complete ready-to-use solu-
tion. The components that constitute the application can be
assets from the ecosystem or private resources. Application
providers benefit from a platform on which they can offer ap-
plications to users similar to an app-store for smartphones.
Application providers can develop and improve their appli-
cations using assets that are available in Agora. For ex-
ample, one can offer a web shop as an application which
integrates a pipeline for article recommendations.
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Figure 2: An overview of the architecture of Agora with 15
selected Research Challenges (RCs).

3. AGORA ARCHITECTURE
Agora builds around assets and consists of two layers: the

Asset Layer and the Execution Layer. A major strength of
Agora is its seamless connection between these two layers.
It goes beyond stand-alone marketplaces, stand-alone execu-
tion engines, and cloud services with the goal of facilitating
the use of DS tools for a broader group of users. Figure 2
illustrates the architecture of Agora.

The asset layer constitutes an “intelligent” ecosystem
of multiple asset marketplaces and enables not only offer-
ing and finding assets but also composing them in a smart
way via asset managers. Recall our motivation example de-
scribed in Section 1.3. Bob, who is searching for a dataset,
has the choice of going directly to his favorite marketplace or
to an asset manager to find his desired dataset. In the former
case, he either browses the marketplace or uses keywords to
search within it. In the latter case, he simply specifies his
request in a declarative manner and the asset manager is
responsible to respond by accessing multiple marketplaces.

The execution layer optimizes and runs asset execution
plans via execution managers and node executors. For in-
stance, Charlie, in our running example, finds his pipeline
via an asset manager and decides to execute it in Agora.
For this reason, the asset manager translates the pipeline
into an execution plan together with its equivalent assets,
which are logically equivalent variants satisfying the same
request. Logically equivalent variants can be different phys-
ical implementations of the same logical operator, alterna-
tive compute nodes with similar properties, or alternative
data sources, such as weather data from different providers.
Next, the asset manager passes the execution plan to an ex-

ecution manager, which is responsible to optimize the plan
and find the best possible equivalent pipeline asset that re-
spects Charlie’s budget. The execution manager accesses
processing nodes through a node executor, which is a stan-
dardized component to interface arbitrary execution envi-
ronments with execution managers. For example, NodeEx-
ecutor 1 in Figure 2 provides access to a Trusted Execution
Environment (TEE), such as an Intel SGX Enclave [17], and
NodeExecutor 2 provides access to a Flink [13] or Spark [100]
Job Manager to run Flink and Spark Jobs on a cluster.

It is worth noting that all components of Agora (asset
marketplace, asset manager, execution manager, and node
executor) are assets themselves. A consumer/provider can
offer her own implementation for any of these components
and charge consumers for its use. Consumers can choose be-
tween concrete implementations provided by different users.
We believe that this flexibility leads to a competition for
providing the best possible Agora components, e.g., for pro-
viding the execution manager with the best optimizer.

In the following, we discuss the details of the two layers
and point out 15 research challenges (RCs), which we further
elaborate in Section 4.

3.1 Asset Layer
Agora’s asset layer consists of an ecosystem of asset mar-

ketplaces, which allow providers to share their assets, and
asset managers, which allow consumers to easily use assets
across multiple marketplaces..

Each asset marketplace contains catalogues that keep
track of the available assets and their properties. To make
this possible, Agora unifies assets under a common specifi-
cation. Only a unified specification enables easy asset dis-
covery and composition across all the marketplaces in the
ecosystem. Providers should conform with this unified spec-
ification when they offer new assets to the marketplaces.
This can be a barrier for new asset providers. Therefore, it
is crucial that Agora provides the means for automatically
generating asset specifications from more intuitive user in-
puts, such as query and programming languages or graphi-
cal interfaces. Defining such a specification and determining
ways for its automated extraction is challenging due to the
the large heterogeneity of assets (RC1 and RC2 ).

Moreover, providers might want to specify usage con-
straints to their assets. For example, location requirements
(e.g., private data may not be moved out of a country) or
vendor requirements (e.g., my algorithm may not be used
by a competitor) may be asset constraints. Identifying the
best way to describe constraints over assets is an interesting
research challenge because of the asset heterogeneity and
different constraint granularity (RC5 ).

Providers can also define a pricing model (e.g., subscrip-
tions or pay-per-use) for their assets usage (RC8 ). Ideally,
Agora proposes a pricing model and a price based on mon-
itoring the current trend of the market. When a provider
chooses a pay-per-use pricing model, Agora ensures to track
the asset’s usage and report usage counters back to market-
place (RC9 ). Marketplaces then perform the invoicing and
initiate (micro-)payments between users (RC10 ).

Asset managers are the entry point for users who want
to declaratively: find assets across different marketplaces;
combine multiple assets into execution plans; and run asset
execution plans. An asset manager provides a graphical user
interface and/or a declarative language for finding and com-
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posing assets (RC3 ). A user request is then converted to an
intermediate representation (IR), which allows for match-
ing asset specifications with user requests (RC1 ). The asset
manager matches user requests to assets that are compat-
ible with each other and satisfy the requests (RC3 ). For
this, it needs to aggregate the assets of all marketplaces and
build an asset index (RC4 ). Next, the asset manager com-
poses all the relevant assets (with their equivalent assets)
together so that they fulfill the request. When composing
assets, it is crucial to satisfy usage constraints of the assets
(RC6 and RC7 ). As a result, the asset manager outputs
an asset execution plan, which allows the execution layer to
further optimize, deploy, and run the plan.

3.2 Execution Layer
Agora’s execution layer consists of execution managers,

which receive execution plans from an asset manager, and
node executors, which allow consumers to run their assets.

An execution manager is a core component of the ex-
ecution layer. It is responsible for optimizing an asset exe-
cution plan, deploying it on compute nodes, and monitoring
its execution. As the plan may contain different variants
of operations, the execution manager can schedule an op-
eration of an execution plan on different execution environ-
ments (node executors). Achieving this multi-environment
execution of a plan is very challenging as the search space of
all possibilities to execute a plan becomes very large (RC14
and RC15 ). The selection of existing variants and the se-
lection of node executors goes hand-in-hand with possible
algorithm adaptations, which increases the performance on
a particular target system.

A node executor is Agora’s interface component to con-
nect arbitrary execution environments with execution man-
agers. For example, in Figure 2 the asset execution plan is
deployed to three node executors with different characteris-
tics: NodeExecutor 1 provides access to a trusted execution
environment (TEE), which provides additional security be-
cause the owner of the node has no access to the executed
source code nor the processed data (RC12 ); NodeExecutor 2
provides access to a Flink or Spark Cluster; and NodeEx-
ecutor 3 provides direct access to hardware resources on a
dedicated server. When dealing with multiple node execu-
tors, Agora provides a secure way to transfer data among
nodes to validate data integrity and to pay for data that is
traded as an asset. This is hard to achieve especially when
data is large or data streams have high bandwidth (RC13 ).

It is worth noting that both node executors and execution
managers are responsible for tracking the usage of assets,
which is crucial to ensure fair payments. This is a chal-
lenging task because it also assumes tracking fine-granular
operations in a composition of assets (RC9 ). Agora adopts
certificates to ensure transparency and trust between con-
sumers and providers. For example, one can certify the
physical location of a node, security standards, compliance
with asset usage tracking, or energy efficiency. The main
challenge remains in the standardization of certificates and
assets requirements (RC11 ).

4. RESEARCH DIRECTIONS
We now elaborate on the 15 main research challenges that

we believe are crucial to address in order to implement
Agora. Most of the challenges stem from the heterogene-
ity of assets and the open ecosystem setting. They deal

with asset management (Section 4.1), compliant asset pro-
cessing (Section 4.2), pricing and payments (Section 4.3),
privacy and security (Section 4.4), and efficient asset execu-
tion (Section 4.5). In the following, we discuss each research
challenge and outline approaches to tackle them.

4.1 Asset Management
The first step towards Agora is enabling effective and ef-

ficient asset management : any asset-related operation, such
as asset sharing, discovery, and composition. We identify
the following four main research challenges that we need to
tackle to achieve this.

(RC1) Unified specification. A major challenge for as-
set management is the design of a unified specification (a
standard). Such a specification will allow sharing and dis-
covery of assets not only within a single marketplace but also
among different markets. It, thus, facilitates the usage of an
asset search engine across different marketplaces. The diffi-
culty in devising such a standardization lies in the fact that
there are different types and granularities of assets: from
datasets and stream sources to complex algorithms or data
management systems. The standard should take all these
different types of assets into consideration while keeping as
much simplicity as possible. In addition, a single asset may
not be sufficient to satisfy a consumer’s request. For this
reason, the standard should enable interoperability among
assets so that composite assets, i.e., assets formed by multi-
ple assets, can also be shared. To enable asset composition,
such as the one required for our example in Section 1.3, the
specification must be flexible to consider asset combinations.
It should enable building complex pipelines and systems and
at the same time be general enough to support all operations
and multiple query languages.

Our initial efforts towards a unified specification is a
declarative intermediate representation of data science as-
sets [76]. To cope with the lack of higher-level declarative
abstractions for end-to-end data science processes [80], we
have defined a schema for the specification of the execution
of data science pipelines inspired by ML Schema [72] or
Amazon’s experiment tracker [81]. Figure 3 shows an ex-
ample of the intermediate representation of a data science
pipeline asset following this schema specification. Nodes in
the graph represent high level asset categories, optionally ac-
companied by their metadata, and edges connect two assets
by their input/output. Having such a high level representa-
tion of assets allows us to make further optimizations and
find equivalences among different assets.

(RC2) Automated specification generation. Provid-
ing the asset specification can be error-prone and introduce
significant overhead to asset providers. For this reason, it
is necessary to provide mechanisms to generate assets spec-
ification from more intuitive user inputs. This opens up
new research directions on automated extraction of a spec-
ification from query and programming languages as well as
graphical user interfaces. Our first step towards this di-
rection focuses on data science asset providers, i.e., data
scientists, who are primarily familiar with writing Python
scripts. Agora extracts an intermediate representation from
data science pipelines written in Python code with little
or no involvement of the end-user [76]. Our approach al-
lows for simple and straightforward use of the asset layer,
yet integrates it with a powerful tool for search and shar-
ing, potentially across languages and domains. Automation

5



1 X_train ,X_test ,y_train ,y_test = train_test_split(X,y,
test_size =.1)

2

3 feature_transformation = ColumnTransformer(
transformers =[

4 (’categorical_attr ’, OneHotEncoder(unknown=’ignore ’)
, [’area’, ’floor’]),

5 (’numeric_attr ’, StandardScaler (), [’surface ’, ’
crime_rate ’])])

6

7 pipeline = Pipeline ([
8 (’features ’, feature_transformation),
9 (’learner ’, SGDClassifier(max_iter =1000, tol=1e-3))

])
10

11 param_grid = { ’learner__alpha ’: [0.0001 , 0.001 ,
0.01, 0.1] }

12 search = GridSearchCV(pipeline , param_grid , cv=5)
13 model = search.fit(X_train , y_train)
14

15 predicted = model.predict(X_test)

Listing 1: Excerpt of a data science pipeline asset expressed
in Python which predicts real estate pricing.

of schema extraction is based on static code analysis [58]
and its semantic enrichment [67]. Listing 1 shows a real
estate predictor asset, while Figure 3 shows the automat-
ically generated intermediate representation of this asset.
To achieve this automated extraction we maintain a sim-
ple knowledge base consisting of data science sub-processes
(e.g., normalization). We then map object signatures that
the programming language (and its ecosystem) supports to
the categories found in the knowledge base. For example,
Python’s sklearn.preprocessing.OneHotEncoder class sig-
nature maps to the ‘data-preprocessing-transformation’ cat-
egory, that instructs the system what meta information to
extract and how. We plan to further investigate this direc-
tion and attempt exploiting pattern mining solutions as a
potential replacement of manually curated knowledge bases.

(RC3) Matchmaking. The asset layer via its asset
search engine (as well as a single marketplace) should be
able to effectively and efficiently identify all assets related to
a given consumer’s request. To achieve this the marketplace
should provide the users with a declarative query language
or graphical user interface that allows them to discover as-
sets with the desired characteristics. Using the graphical
user interface lay users can browse assets or use a keyword
search, while more advanced users should be able to use
the declarative query language to quickly describe the as-
sets they want. Devising a declarative language which can
express requests about different types and granularities of
assets is a challenging task. In addition, identifying the
most suitable approach for matching a query with the avail-
able assets is not straightforward. To solve this challenge
we are looking into the direction of matchmaking and rec-
ommendation, which has been used recently in multi-sided
marketplaces [53]. The difference with traditional recom-
mendation systems is that in the case of marketplaces, such
as the asset layer we envision in Agora, there is a multi-
objective optimization problem that needs to be taken into
consideration: increasing both provider and consumer satis-
faction. We also plan to combine recommendation systems
with the solutions that focus on satisfaction-based [74, 73,
75] and economic-based query processing [84].

(RC4) Market aggregator. The Agora ecosystem is
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Figure 3: Automated specification generation of the asset
shown in Listing 1. The numbers next to the algorithm
assets point to the lines of code in Listing 1 that represent
that particular asset.

composed of multiple asset marketplaces. It is thus impor-
tant for the asset manager to be aware of the different mar-
ketplaces and their assets through a market aggregator. The
challenge we have to face when building the market aggre-
gator is twofold: (i) indexing available assets in an efficient
and scalable way despite their number and diversity, and
(ii) finding equivalences among assets. Although the as-
set specification facilitates the comparison between two as-
sets, it is still not straightforward how exact or approximate
equivalences can be found. We plan to incorporate tech-
niques from source code search engines [52] and program
translation [61], traditionally used to migrate code from one
language to another, to tackle these two challenges.

4.2 Compliant Asset Processing
In such an open asset-centric ecosystem as Agora, it is

important to allow providers to provide constraints to their
assets. A provider might not want her asset to be processed
in unintended ways and therefore may specify usage policies
that the asset consumer should comply to. For this rea-
son, asset processing (i.e., satisfying a user’s request) faces
unique challenges due to asset constraints and legal require-
ments. For example, a usage policy may prohibit overlay-
ing (joining) the provided data with any other data [59] or
may disallow aggregation with other providers [97]. More-
over, combining geo-distributed assets may involve transfer
or shipping of assets across borders. As a result, asset pro-
cessing must comply to regulations (such as GDPR [32] or
CCPA [12]) that prohibit the use or flow of assets across ge-
ographical borders or certain sites. For example, processing
data generated by autonomous cars in three different ge-
ographies, such as Europe, North America, and Asia, may
face different regulatory constraints: There may be legal re-
quirements that only aggregated or anonymized data may
be shipped from Europe and no data whatsoever may be
shipped out of Asia. This opens up a completely new di-
mension of compliant query (“asset”) processing that entails
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Figure 4: Excerpt of distributed query plans for TPC-H
Query 10. The leaf nodes denote base tables located in
Middle East (ME), North America (NA), and Europe (EU).

the following two research challenges.

(RC5) Constraint specification. The first challenge
to overcome is determining how to specify asset constraints
declaratively. Doing so is important for easing the specifi-
cation of constraints. However, it is challenging not only
because of the asset heterogeneity but also because of the
different constraint granularities. For example, a constraint
might apply to an entire asset, parts of it, or even to infor-
mation derived from it.

(RC6) Constraint satisfaction. The second challenge
is to find efficient ways to process queries in a manner com-
pliant with respect to asset constraints. In our early efforts
towards realizing Agora we provide support for compliant
geo-distributed query processing. Our initial implementa-
tion allows expressing constraints on shipping data across
geographical borders using our extended -SQL statements.
Its query optimizer aims at finding distributed query exe-
cution plans that are compliant with respect to shipping of
intermediate data between compute sites.

To illustrate query plans produced by a compliant query
optimizer, assume TPC-H query Q10 in a setting where
data is geo-distributed: the base tables are geo-distributed
across the Middle East (ME), North America (NA), and Eu-
rope (EU). Also, we set one constraint stating that no data
from NA can be shipped to EU. Figure 4 shows excerpts of
the query plans produced by a traditional query optimizer
(Figure 4(a)) and our optimizer (Figure 4(b)). The query
plan on the left is not compliant because it disregards con-
straints on shipping parts of the Lineitem table to Europe.
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Figure 5 shows the
query optimization
time for that query
along with query TPC-
H Q3. Both queries
involve joining data
from different geo-
graphical sites, with a
number of constraints
on data movement
across the different
geographical sites. We
observe that traditional
query processing is
not suitable for such
settings as they simply
disregard the data

movement constraints: they can indeed produce non-
compliant query execution plans (denoted by NC), such as
the one for Q10, whereas our approach always produces a
compliant plan (denoted by C) if it exists. This shows that
traditional query processing techniques are unsuitable for
dealing with asset constraints. Still, is it possible to match
(or be as close as possible to) the performance of traditional
query processing? This is a major challenge we are seeking
to tackle in Agora.

(RC7) Capturing asset provenance. Another impor-
tant aspect when combining and sharing assets is to be able
to audit compliance with respect to data usage and its shar-
ing policies. To this end, we also need provenance capturing
technology in an asset-centric marketplace. While work on
using provenance to audit compliance (e.g., [15, 93]) has re-
ceived much traction, their applicability is limited to homo-
geneous execution environments or to special data process-
ing facility. To support auditing in Agora, we need novel
solutions that can capture provenance in a heterogeneous
execution environment. In particular, we need provenance
models that can capture relationships in composite assets,
deal with diverse data models of assets, and cope with large
amounts of provenance data.

4.3 Pricing and Payments
In contrast to existing marketplaces for data or algorithms

and to existing cloud providers, Agora leverages a more flexi-
ble and extremely diverse combination of assets. This makes
it challenging to track each stakeholder’s contributions and
consumptions and to organize the respective invoice and
payment processes. In this section, we discuss research di-
rections with respect to pricing and billing in Agora.

(RC8) Pricing models. Our ecosystem should allow
providers to define prices of their assets based on different
pricing models. Ideally, the system should also propose a
price based on a continuous market monitoring. Ideas from
query-based pricing [18, 46] and economic models for the
cloud [84] can be the foundation, but have to be extended
to fit a more general data ecosystem. We plan to support
different pricing models. In software licensing, there are
three common and fundamentally different pricing models:
pay-once, subscription, and pay-per-use. With pay-once, a
user buys a license once and can use the licensed software
forever. Subscription models are similar to the pay-once
model, with the difference that licenses may expire and have
to be renewed. The pay-per-use model is common for cloud
services where users pay every time they use a service or call
a function (e.g., the Google Speech API, the Twitter API,
and AWS Lambda functions). A provider could adopt any
of these models. For instance, pay-per-use can be used for
algorithms (e.g., pay $1 per thousand calls) and for compute
resources (e.g., pay $5 per hour). While a pay-per-use model
seems to be the fairest solution, it is challenging to realize
pay-per-use in a processing pipeline that consists of many
different assets including algorithms, code, and compute re-
sources. In the following, we layout the challenges related
to usage tracking and micro-payments as well as outline a
solution for each of them.

(RC9) Asset usage tracking. To ensure fair asset pay-
ments, the execution manager should be able to track the
usage of the assets. However, tracking fine-granular oper-
ations in a set of assets (e.g., in a pipeline), which may
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run in parallel, is not an easy task. It requires not only
an aggregation component but it also depends on the trust-
worthiness of the nodes that report the usage tracking. In
Figure 6, we depict a possible mechanism for usage track-
ing. This mechanism provides a common API that allows
for calling a tracking function from the asset source code
(to track the use of assets) or as an operator (to track the
use of pipelines). Alternatively, one could also track the
amount of processed data as part of our secure transmission
process (see Section 4.4). Because usage tracking functions
are called many times (e.g., per processed tuple), an ag-
gregation component is required to propagate aggregated
usage counters (e.g., once per minute) instead of individual
function calls. We plan to base this aggregation compo-
nent on our previous work on efficiently aggregating data
streams [14, 90, 91] as well as on related work that enables
distributed (pre-) aggregation [7, 51]. Still, such a usage
tracking mechanism does work only if compute nodes hon-
estly report usages counters. We, thus, allow for restricting
the execution of operators and pipelines to specific nodes,
which fulfill certification requirements (see Section 4.4).

(RC10) Payments. Ensuring a safe way for providers
to charge and consumers to pay the use of assets is cru-
cial for the ecosystem health. Ideally, a payment process
would be distributed such that each component can re-
ceive micro-payments and forward parts of these payments
to sub-components. For example, an execution manager
may charge $1 to process a MB of data, but has to share
that money with asset providers. Note that composite-
asset providers have to split their share again, to pay the
individual asset providers that are part of the pipeline.
Recently, blockchain-based techniques [50, 96] as well as
blockchain-alternatives such as IOTA [69] have been pro-
posed to support such micro-payments. However, all these
techniques have been criticized for either limited scalability,
transaction-fees, proof-of-work requirements, security issues,
missing final settlement of transactions, or authority central-
ization. Morevoer, given the diversity of cryptocurrencies
and their underlying technologies [16], it is impossible to se-
lect a single best payment system. Therefore, we aim at in-
tegrating an abstraction layer to make Agora agnostic to the
details of the payment method used between users. Agora
will provide a reference implementation for the most com-
mon payment methods and users may implement additional
options: users will have to implement the logic for executing
a payment, including a notification about the completion of
a transaction; Agora will trigger transactions and confirm
completed transactions based on the users’ implementation.

4.4 Privacy and Security
Another major concern in an open ecosystem is privacy

and security. Agora needs to ensure privacy and security
when processing assets as well as secure, private, and scal-
able data transfer among users and processing nodes. We

describe both aspects and present respective research direc-
tions in the following.

In Agora, users may decide to run their assets on process-
ing nodes operated by a diversity of providers. As these
providers have physical access to their processing nodes,
they potentially gain access to the code of assets that runs
on their nodes and the data these nodes process. Both data
and code of assets should be protected against unauthorized
access and manipulation to ensure privacy and to prevent at-
tacks aiming at manipulating results. We investigate three
approaches that complement each other: establishing trust
certificates, using trusted execution environments, and en-
suring secure data transfer.

(RC11) Establishing trust certificates. Certifications
are a common way to establish trust between cloud providers
and users [85]. However, existing certifications for cloud
providers assume a single provider (e.g., AWS, Microsoft
Azure, or IBM Bluemix) to serve a very large number of
users. Thus, the certification process can be complex and
users are able to check certificates manually for the (only)
one provider they use. Agora aims at drastically increasing
flexibility for asset creation and execution. Consequently,
the main challenge resides in the standardization of certifi-
cates and asset requirements. Our goal is to enable the
execution manager of Agora to automatically match assets
with compute and storage resources. To this end, our key
idea is to democratize the certification of properties, such
as security standards and the locations of nodes. Everyone
can become a certification authority and decide which au-
thorities to trust. For example, the EU could certify that a
compute node is located in the EU and therefore become a
certification authority. The execution constraints of an asset
(or asset execution plan) then include a set of required cer-
tificates connected with trusted authorities for each type of
certificate. Technically, we plan to use the TLS handshake
protocol [57] as solution for authenticating compute node
properties. In contrast to common TLS in the world wide
web, each compute node in Agora may hold a plethora of
certificates issued by diverse certification authorities. The
execution manager then validates that all required certifi-
cates are present at a compute node before assigning an
asset to that particular node.

(RC12) Trusted execution environments. A Trusted
Execution Environment (TEE) provides a solution for se-
cure computation, which does not require to trust the owner
of a compute node. Thus, TEE-based solutions go be-
yond certification-based solutions to protect assets code and
data, which are particularly critical for security. We espe-
cially consider TEEs that enable remote execution, such as
ARM TrustZone [60] and Intel Software Guard Extension
(SGX) [17]. The key idea is that processor vendors provide
a secure execution environment within their processors. The
processor ensures the integrity of the executed code with a
remote attestation, which prevents code manipulations [95].
All data enters the secure environment encrypted, and is
decrypted only within the processor. The processor also en-
crypts all outputs before they leave the secure environment.
Thus, the owner of a compute node cannot see or manipulate
any asset data or code that runs inside the TEE, i.e., within
the processor. In the past, it was difficult to engineer appli-
cations for TEEs, which has also lead to security vulnerabil-
ities [39, 86]. Nowadays, open source frameworks, such as
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Asylo [70] and Keystone [48], ease the development of assets
that run in TEEs. This makes it feasible to leverage TEEs
in the context of distributed data processing. Agora will
support TEEs to improve security in general and to enable
secure data processing even on uncertified nodes. Thereby,
existing works on TEE-secured databases [71, 94, 102] and
stream processing systems [36, 66, 89] are an important first
step, but need to be extended to be (i) scalable, (ii) gener-
ally applicable, and (iii) easy to use in the context of an
asset-based ecosystem such as Agora.

(RC13) Secure data transfer. It is important that
users can exchange data among them in a secure way within
Agora. In this context, ‘secure’ means that (i) all data trans-
mission is encrypted to prevent unauthorized access, (ii) the
integrity of the data is guaranteed and can be validated by
receivers, and (iii) sender and receiver can use an escrow
service to secure data trading. One of the challenges is that
data can be arbitrarily large and data streams often have
high bandwidths. Thus, senders need to send data directly
to receivers and the execution manager should act as a co-
ordinator. We outline our solution for secure data exchange
in Figure 7. The execution manager acts as a mediator to
pass the hash value and key of the encrypted data from
the sender to the receiver. Thus, the execution manager
works without storing or transmitting the data itself, which
prevents it from becoming a honeypot of data for potential
attackers. The execution manager releases the key if and
only if the receiver issues the payment for the received data.
The receiver will only issue the payment once it confirmed
the data integrity using the provided hash value. Existing
key escrow encryption services [23] can serve as a blueprint
for our ecosystem. However, we need to adapt these tech-
niques to support assets requiring stream processing and
intermediate transmissions within assets. We want to de-
sign a scalable and light-weight escrow process, which can
be performed even for small chunks of data (e.g., network
packages). This process has to combine fast micro-payments
(discussed in Section 4.3) with a scalable implementation of
the coordination component in the execution manager.

4.5 Efficient Asset Execution
Given the high diversity of assets in Agora, it is crucial

to also provide a diverse execution environment in order to
obtain maximum performance. Following the one-size-does-
not-fit-all dictum, a plethora of specialized systems have
emerged since almost two decades ago. There are report-
edly over 200 different platforms only under the umbrella of
NoSQL [22]. Each excels in specific aspects, e.g., Spark is
optimized for batch processing (requiring full scans) and a
database is very efficient for point queries (requiring index

access), leading to works using multiple systems [8, 33, 45,
68, 92]. At the same time, processor vendors have turned
to specialization and acceleration, i.e., building processors
that are optimized for a specific use case [10], such as GPUs
and FPGAs. Broadly speaking, GPUs are optimized for
highly parallel throughput applications [49], whereas CPUs
are optimized for single thread performance [10]. FPGAs,
in turn, enable the design of custom hardware solutions to
meet high demands on latency and throughput and hence
are also increasingly being used to accelerate some data pro-
cessing tasks [87, 29].

In this highly heterogeneous computing landscape, it is
crucial that Agora fully leverages the capabilities of each
data processing platform (databases, dataflow-based pro-
cessing systems, stream processing systems, etc.) and com-
puting device (CPU, GPU, or/and FPGA) to get the max-
imum performance benefits out of them. However, fully
leveraging this heterogeneous computing landscape is chal-
lenging for several reasons that we explain in the following.

(RC14) Heterogeneous asset deployment. Agora
can determine the deployment environment,
i.e., the processing system for deploying each asset.
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For example, if the asset
is a stream processing al-
gorithm, Agora might de-
cide to run it on Flink [13],
while if it is a reinforce-
ment learning algorithm,
it may decide to run it on
Ray [56]. Identifying the
type of assets and where
they should be executed
is a very challenging task.
We already did the first
step towards this direction
with Rheem [3]. We have
shown that using multiple data processing platforms signif-
icantly decreases the execution time of a single processing
task. For instance, Figure 8 shows the runtime of a classifica-
tion training asset using stochastic gradient descent (SGD)
for different batch sizes and for the HIGGS dataset as input.
We observe that enabling heterogeneous asset deployment
(Spark and JavaStreams for the example) can significantly
increase performance (more than one order of magnitude
faster than using Spark, Flink, or JavaStreams only for the
example). We also have shown such performance benefits for
a large variety of other tasks [3, 45]. Thus, the consumers
of Agora can benefit from such performance increase with-
out any knowledge about the deployment itself. Although
Rheem is one of Agora’s ingredients, considering highly di-
verse assets is still an open research problem.

(RC15) Heterogeneous asset execution. In addition
to determining which processing system to execute an asset,
Agora also determines how to allocate the asset to compute
resources. Given a number of processor-specific algorithm
implementations, it has to decide on which processor to ex-
ecute every single asset. However, achieving this in an au-
tomatic way is challenging for several reasons. To statically
schedule assets, we have to specify the computational re-
quirements of an algorithm as metadata and match them
with the computational capabilities of hardware providers.
Scheduling assets dynamically at runtime requires cost mod-
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els and output cardinality estimates that capture algorithm
behavior on heterogeneous computing resources. Although
such cost models [37, 38] and cardinality estimates [34, 98]
exist for specific applications, Agora requires more generic
models to reflect the asset diversity. A promising approach
is to synthesize complex algorithms from basic data layout
design choices and data access primitives, which one can
quickly benchmark on different processors [42]. This ap-
proach has been demonstrated only on CPUs. We will ex-
tend these basic building blocks to capture the specific prop-
erties of heterogeneous computing resources. Still, Agora
must adapt algorithms to the specific processor they run
on to exploit the full potential of heterogeneous computing
resources. For this, we must automatically generate such
processor-specific algorithm implementations. Our previous
work [11, 77, 78] demonstrates that this is indeed feasible:
Data processing systems can learn processor-specific imple-
mentations during installation or at runtime.

The abovementioned research challenges present the oppor-
tunity to integrate and advance database research in many
sub-fields, from query compilation and processing to infor-
mation integration to data mining, while dealing with pri-
vacy, security and billing as well as with heterogeneous hard-
ware and other novel computer architectures.

5. RELATED WORK
Most advanced DS systems require huge amounts of data,

cutting edge data science innovations, and powerful compu-
tational infrastructure. Agora aims to connect providers and
users of these key assets in an open ecosystem. In contrast,
recent works such as OpenAI [64], Ocean Protocol [62], ML
Bazaar [83], Enigma [27], Datum [35], and Nebula [44] tackle
only parts of the solution provided by Agora. For example,
OpenAI [64] is the first non-profit research initiative pro-
moting “openness” in AI. This organization aims at ensuring
that AI benefits touch all of humanity. However, it primar-
ily builds custom solutions and shares them via free software
for training, benchmarking, and experimenting. Ocean Pro-
tocol [62] has similar goals with Agora, i.e., democratizing
AI by giving equal opportunities to everyone to access data.
To achieve this they develop a decentralized protocol and
network to be used as a foundational substrate to power a
new ecosystem of data marketplaces. However, their focus
in only on the data aspect. Datum [35] focuses on the pri-
vatization and secure storage of data sharing and proposes
a network based on blockchain technology that allows users
to take control of their data, both personal and data from
IoT devices they own. Enigma [27] offers a protocol for
computations on encrypted data by enabling computational
resources to be shared securely in a decentralized manner
and Nebula [44] forms a cloud of edge computers to per-
form distributed data-intensive computing. In the space of
machine learning, ML Bazaar [83] proposes a unified ML
API to ease the development and sharing of ML algorithms.
Although such primitives can be used in our specification,
Agora goes beyond a simple abstraction to a holistic solution
for democratizing AI and data science. Although all these
efforts are going in the right direction for building a data
ecosystem, it is still hard to combine them for devising new
solutions. Our work envisions a single data ecosystem where
data, DS technologies, and storage and compute resources

can easily be combined to give birth to new data insights or
technologies.

There are also initiatives in providing marketplaces for
sharing data [19, 21], data science tools [5, 31, 54], AI [54,
2, 5, 9], and services [79, 28]. When it comes to match-
making, previous solutions are inspired by the semantic web
reseach community that address a similar problem for web
services [65], including solutions for automated web ser-
vice composition [25]. The industry has also brought stor-
age, computational, and cloud resources at the reach of the
masses. Amazon EC2 [4], Microsoft Azure [54], and IBM
Cloud [41] are just few examples of such efforts. Neverthe-
less, all these efforts provide lock-in solutions: Users must
stick to one provider for the entire pipeline of their solutions.
We envision an open data ecosystem where one can combine
resources from different marketplaces without lock-in effects.

The research community has also proposed many solutions
to facilitate data processing in general from different angles:
such as scalable data processing systems [99, 6], declarative
data querying [26, 63], intelligent systems [47], internet-of-
things systems [55, 101], and cross-platform (a.k.a. poly-
store) processing [3, 24, 33], among others. All these works
are orthogonal and complementary to our vision: one could
see them as the assets being offered in Agora.

6. CONCLUSION
We presented Agora, our vision towards a unified asset

ecosystem. Assets are fine-grained data-related units of pro-
duction, such as data, algorithms, and physical infrastruc-
ture components. Agora provides the technical infrastruc-
ture for offering, using, and combining assets to form novel
data-driven applications and to derive new insights. One
can share assets through marketplaces, use and combine
them through asset managers, and execute them through
execution managers. Ultimately, Agora aims at providing
open access to the entire data value chain, thereby prevent-
ing lock-in effects and removing entry barriers for new asset
providers. We pointed out 15 open research challenges that
the database research community should address to make
such an asset ecosystem a reality. We discussed different
potential solutions with respect to asset management, com-
plaint asset processing, asset pricing and billing, asset pri-
vacy and security, as well as efficient asset execution.

This paper is a call for action as we believe that the
database community is well positioned to lead the efforts
towards a unified asset ecosystem. That, in turn, will have
positive implications on society, economy, and science:
• Society: It would be used not only by economic operators
but also by research institutions, universities, schools, and
citizens, which would have a huge benefit in data literacy.
For example, students could be playfully introduced to pro-
gramming, data analysis, and even potential business mod-
els. Lay people could also prepare chores, or even potential
business models, by developing on top of the exposed data
and analytics infrastructure. Most importantly, data and
DS technologies could remain with their owners. Everyone
could contribute to the big asset ecosystem.

• Economics: It would provide a breeding ground for data-
driven technology innovation by exposing data and DS tech-
nologies. This would reduce the cost of new insights or the
establishment of new business models. In this way, it can
become an innovation engine for education, business mod-
els, business start-ups, and data-driven value creation. It
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would also have a huge impact on small and medium-sized
enterprises by having a lower entry threshold for the use of
a data and analysis infrastructure. For example, it would
enable a restaurant to predict how long they will have to
stay open on a given evening in order to better plan human
resources. Additionally, it would motivate a consistent im-
plementation of open standards, which, in turn, could break
the current vendor lock-in effects.

• Scientific: It would make tools of the entire data value
chain (processing, analysis, and visualization) re-usable and
easy-to-use (web-based, plug & play, a combination of pub-
lic and private data in an analysis). This would enable more
researchers to derive insights from data without deep knowl-
edge about data management and algorithms. It would also
foster scientific innovation by enabling researchers to eas-
ily share their data insights and technologies. Moreover, it
would ignite new research in all sciences by providing scien-
tists with access to a large amount of data and state-of-the-
art DS technologies.
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[73] J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez. A
Self-Adaptable Query Allocation Framework for
Distributed Information Systems. VLDB Journal,
18(3):649–674.
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