
P
R
E
P
R
I
N
T

Compliant Geo-distributedQuery Processing
Kaustubh Beedkar

TU Berlin

Jorge-Arnulfo Quiané-Ruiz

TU Berlin, DFKI

Volker Markl

TU Berlin, DFKI

ABSTRACT
In this paper, we address the problem of compliant geo-distributed

query processing. In particular, we focus on dataflow policies that

impose restrictions on movement of data across geographical or in-

stitutional borders. Traditional ways to distributed query processing

do not consider such restrictions and therefore in geo-distributed

environments may lead to non-compliant query execution plans.

For example, an execution plan for a query over data sources from

Europe, North America, and Asia, which may otherwise be optimal,

may not comply with dataflow policies as a result of shipping some

restricted (intermediate) data. We pose this problem of compliance

in the setting of geo-distributed query processing. We propose a

compliance-based query optimizer that takes into account dataflow

policies, which are declaratively specified using our policy expres-

sions, to generate compliant geo-distributed execution plans. Our

experimental study using a geo-distributed adaptation of the TPC-

H benchmark data indicates that our optimization techniques are

effective in generating efficient compliant plans and incur low over-

head on top of traditional query optimizers.
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1 INTRODUCTION
Today’s globalized world has widened the landscape of data an-

alytics applications. Large organizations accommodate several

databases and IT infrastructure at various sites
1
. As a result, or-

ganizations require to perform data analytics across different lo-

cations [27, 46, 58, 62]. Supporting geo-distributed data analytics

(a.k.a. wide-area big data) in a unified manner is crucial for an or-

ganization’s day-to-day operations, including back-office tasks and

informing data-driven decisions.

In such geo-distributed settings, most works have mainly fo-

cused on expanding the scope of query processing frameworks

to support sites at different physical locations [31, 32, 45, 56, 59].

Strategies typically involve distributing query operators (like join

or aggregation) across sites based on several performance metrics,

such as latency and bandwidth. For example, executing a two-way

1
These sites can be at different organizations or geographical (national or international)

locations. For clarity, we refer to both kinds of sites as geo-distributed sites.
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join query over data sources from Asia, Europe, and North America

may be faster when performing the first join in Europe and the

second one in Asia than the other way around.

Still, an important aspect of geo-distributed data analytics,

which has not been considered yet, is cross-border dataflow re-

strictions [7, 11]. Dataflow restrictions arise from regulations or

policies controlling the movement of data across borders. Such

dataflow restrictions may pertain to personal data (e.g., personally

identifiable information), business data (e.g., sales and financial),

or data considered “important” to a country or organization. For

example, processing data generated by autonomous cars in three

different geographies, such as Europe, North America, and Asia

may face different dataflow regulations: there may be legal require-

ments that only aggregated data may be shipped out of Europe, no

data at all may be shipped out of Asia, and only a part of data may

be shipped from North America to Europe. Thus, it is crucial to

consider compliance with respect to dataflow constraints derived

from these regulations during query processing. In particular, when

generating and executing query execution plans, one must not vio-

late any dataflow policy. We refer to this kind of distributed query

processing as compliant geo-distributed query processing.
Although the concept of compliant query processing has been

studied in the literature, it has been for notions different from

the one we consider in this paper. Earlier work has focused on

Hippocratic databases [2, 3], fine grained access control [8, 47, 61],

and secure/privacy-preserving query processing [17, 36, 42, 57]. All

these works are complimentary to our work: We investigate how

to support compliance with respect to data movement during query

processing, which to our knowledge, has not yet been studied.

Supporting compliant geo-distributed query processing entails

two major research challenges. First, we need an easy (thus declar-

ative) way to specify dataflow constraints. Doing so is not trivial

because dataflow constraints may pertain to different types of data

as well as its processing. For example, restrictions may apply to an

entire dataset, parts of it, or even to information derived from it.

Second, we have to find efficient ways to process queries in a man-

ner that they are compliant with respect to dataflow constraints. In

contrast to cost-based query optimization techniques, which focus

solely on performance aspects, we need efficient ways to include

compliance aspects in query optimization and processing.

In this paper, we present our initial efforts towards compliant

geo-distributed query processing. We propose policy expressions as
a simple way to specify dataflow constraints. Our policy expres-

sions are SQL-like statements that concisely specify which data can

legally be shipped to other sites in a declarative way. We also show

how one can effectively and efficiently consider dataflow policies

when generating query execution plans. Especially, we show how

one can integrate a compliance-based query optimizer into the

Volcano optimizer framework [25]. As a result, one can easily in-

corporate our solution into existing query processing frameworks.
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In summary, after further motivating the need for compliant

query processing (Section 2), we present our major contributions:

• We describe the foundations of compliant query processing: We

formalize the concepts of cross-border dataflow policies and com-

pliant query execution plans, which in turn allow us to formally

define the problem of compliant query processing. (Section 3)

• We introduce policy expressions, and propose to use SQL-like

statements, to specify which data can be legally shipped to other

sites in a concise and declarative way. Using SQL-like statements

offers the flexibility of “masking”, i.e., making source data compli-

ant for shipping to another site based on the dataflow constraints

defined by regulations and policies. (Section 4)

• We propose a policy evaluator, which allows for easy integration

of policy expressions into a compliance-based query optimizer. In

particular, it determines to which cross-borders sites the output

of operators can be shipped. (Section 5)

• We show how to use the Volcano optimizer generator to im-

plement a compliance-based query optimizer. In particular, we

enumerate the plan space by applying algebraic equivalence rules

in a top-down fashion and filter compliant ones in a bottom-up

fashion. To do so, we treat geo-locations as “interesting prop-

erties” associated with query plan operators and propose rules

based on the structure of subplans to filter compliant plans. This

allows us to determine whether or not a query can have a com-

pliant execution plan w.r.t. the imposed restrictions. (Section 6)

• We experimentally evaluate the effectiveness and efficiency our

compliance-based query optimizer using a geo-distributed setup

based on the TPC-H schema. Overall, the results show that our

optimization techniques are effective in generating compliant

execution plans. They also show that our techniques incur a

low overhead (in order of milliseconds) on top of traditional

cost-based optimization approaches. (Section 7)

2 MOTIVATING EXAMPLE
Imagine a transnational company, CarCo, a manufacturer of cars

headquartered in Europe. Assume that CarCo has several offices

across Europe, a manufacturing unit with suppliers in Asia, and a

subsidiary that overlooks sales operations in North America (for

its American customers). Following the first quarter, the operations

team in CarCo wants to analyze its financial data by integrating it

with the sales data from North America as well as with the data

from its suppliers in Asia. Note that this geo-distributed scenario is

similar to the query processing pipelines reported byMicrosoft [59],

Facebook [54], Twitter [39], LinkedIn [4], and BigBench [23].

In this scenario, CarCo relies on a distributed DBMS (DDBMS) for

its geo-distributed IT infrastructure. The DDBMS provides a query

interface to CarCo for analyzing its geo-distributed data. Typically,

the DDBMS transparently translates a user specified query into

a query execution plan (QEP). To do so, the query optimizer of

the DDBMS extends single site optimization across distributed

databases. The optimizer considers communication costs between

computing nodes (sites, for short) and introduces a global property

that describes where the processing of each plan operator happens.

In the above geo-distributed environment, typical strategies to

process a query [12, 45, 59] — that involves transferring interme-

diate results — may not comply with data movement regulations.
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Figure 1: Example execution plans for 𝑄𝑒𝑥 .
European directives, for example, may regulate transferring only

certain information fields (or combinations of information fields),

such as non-personal information or information not relatable to a

person. Likewise, regulations in Asia, too, may impose restrictions

on data transfer. To illustrate, assume that CarCo’s DDBMS has

three databases 𝐷𝑁 , 𝐷𝐸 , and 𝐷𝐴 located in North America (N),
Europe (E), and Asia (A) respectively. 𝐷𝑁 stores information about

customers, 𝐷𝐸 stores information about orders, and 𝐷𝐴 stores the

supply information. Consider the following schema

Customer (custkey, name, acctbal,mktseg, region) N
Orders (custkey, ordkey, totprice) E
Supply (ordkey, quantity, extprice) A,

and a query 𝑄𝑒𝑥 , which is given as

SELECT C.name , SUM(O.totprice), SUM(S.quantity)

FROM Customer AS C, Orders AS O, Supply AS S

WHERE C.custkey=O.custkey AND O.ordkey=S.ordkey

GROUP BY C.name
Furthermore, based on recent studies on data movement regula-

tions [1, 7, 11], consider dataflow policies P𝑁 , P𝐸 , and P𝐴 that

applies to data from North America, Europe, and Asia respectively:

P𝑁 Customer data from North America can be shipped outside

only after suppressing account balance information.

P𝐸 Only aggregated Orders data from Europe can be shipped to

Asia and an order’s price cannot be shipped to North America.

P𝐴 Only aggregated Supply data for orders’ quantity and extended

price from Asia can be shipped to Europe.

Figure 1 illustrates two QEPs for 𝑄𝑒𝑥 . Here, the SHIP operator
describes the point where intermediate results are communicated

between two sites and Γ denotes the aggregation operator. For

brevity, we suppress some attributes and use the first letter of tables’,

locations’, and attributes’ names. We will use the number beside

each operator for referring to it in the text. Assume now the QEP

in Figure 1(a) is more efficient than the QEP in Figure 1(b). In this

case CarCo’s DDBMS, which uses cost-based query optimization

strategies, most likely will output the QEP in Figure 1(a). However,

this plan is non-compliant: its SHIP operators violate dataflow poli-

cies P𝑁 (SHIP𝑁→𝐸 ships Customer table without suppressing the

account balance) and P𝐸 (SHIP𝐸→𝐴 ships non-aggregated Order

information to Asia). In contrast, the QEP in Figure1(b) is compliant:

It performs both join operations in Europe and masks Customer

and Supply data before shipping them to Europe; Masking via pro-

jection (operator 2) suppresses the account balance information of

Customers and via aggregation suppresses the orders’ quantity.

Our goal in this work is twofold. First, we enable users to specify

dataflow policies in a simple but effective way. Second, we devise

a query optimizer that (i) determines if a query is legal, i.e., it has
at least one compliant QEP, with respect to dataflow policies, and

(ii) translates a legal query into a compliant QEP.
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Figure 2: Overview of Compliant Query Processing.

3 COMPLIANT QUERY PROCESSING
Let us start by overviewing our query processing framework.

We consider a distributed SQL database that is composed of geo-

distributed databases. Each database 𝐷 is tied to a location 𝑙 . For

simplicity, we assume that each location houses only one database.

We use the notation 𝐷𝑙 to denote database 𝐷 at location 𝑙 . We fur-

ther consider that, in each location, 𝐷 is stored using the relational

model (i.e., tables, columns, and rows) and each node offers a gate-

way to access its database.
2
Without loss of generality, we assume

that the geo-distributed schema is the union of all local schemas.

Figure 2 illustrates the overall architecture of our compliant

query processing framework. A data officer at each location reflects

her data movement policies using a declarative data specification.

The system then stores these policies in a policy catalog for query

optimization. Note that this policy specification process is an offline

process. At querying time, the compliance-based query optimizer

uses this policy catalog (via the policy evaluator), when enumerat-

ing plans, to validate if they are compliant with their input dataflow

policies. The optimizer uses this validation mechanism to know

when a final query execution plan (QEP) is violating an existing

dataflow policy. If so, it rejects executing the query. Only when the

resulting QEP is compliant, it proceeds with the query execution.

Our compliant query processing framework relies on two core

parts: (i) the specification of dataflow policies associated with each

data location, and (ii) the query optimization process under such

policies. In the remainder of this section, we first formalize the

concepts of dataflow policy and compliant query plan and then

define the compliant query processing problem.

3.1 Dataflow Policies
A cross-border dataflow policy describes the restrictions on transfer

of data across organizational and/or geographical borders [11]. In

general, a dataflow policy specifies which information as well as

how and to where this information can be legally transferred. In

our framework, for each database 𝐷 , we consider a dataflow policy

P𝐷 , which is modeled as a set of tuples, P𝐷 = { ⟨𝒟, 𝐿𝒟 ⟩ }, where
𝒟 specifies the information in 𝐷 that can be legally shipped to

locations 𝐿𝒟 . This model allows us to specify different data transfer

2
Such an architecture is common in modern distributed data management systems,

e.g., CockroachDB [10, 53] and Apache Drill [15].

restrictions (on the same data) for different locations. For example,

depending on a location, 𝒟 can specify an entire table, some rows

and columns, or some derived information (e.g., aggregates).

A crucial aspect in adhering to dataflow policies is to mask data

in a way that renders it suitable to be transferred across borders.

For this, we propose policy expressions (Section 4) as a simple way

to express dataflow policies. The idea is to treat these policy expres-

sions as first-class citizens during query optimization, to translate

queries into compliant QEPs. To this end, we propose a policy

evaluation algorithm (the policy evaluator in Figure 2; Section 5).

Abstractly, the policy evaluation algorithm, denoted by 𝒜, receives

the schema of database 𝐷 , a query𝑄 , and a policy P𝐷 , and outputs

a set 𝒜(𝑄, 𝐷,P𝐷 ) of locations to which the result of 𝑄 (𝐷) can
be legally shipped.

3
Recall the Customer database from Section 2.

For 𝑄 = Π𝑐,𝑛 (𝐶), we have 𝒜(𝑄, 𝐷𝑁 ,P𝑁 ) = {𝑁,𝐴, 𝐸 }, and for

𝑄 = Π𝑛 (𝜎𝑎=100 (𝐶)) we have 𝒜(𝑄, 𝐷𝑁 ,P𝑁 ) = {𝑁 }.

3.2 Compliant Query Plan
A QEP is said to be a compliant QEP if it does not violate any of

the dataflow policies, i.e., it does not transfer any intermediate

data to a location that violates a policy. We further ensure that

the resulting compliant QEP retains the query semantics, i.e., the

output of the query should be the same if there were no dataflow

policies. For example, Figure 1(b) illustrates a compliant QEP for our

running query example 𝑄𝑒𝑥 . Compared to the non-compliant QEP

in Figure 1(a), the compliant plan implements: a projection operator,

Π𝑐,𝑛 , suppressing the account balance information as required by

policyP𝑁 ; an aggregate operator, Γ(𝑜, 𝑠𝑢𝑚(𝑞)), to adhere to policy
P𝐴 , and; SHIP operators that do not violate any dataflow policy

when transferring intermediate data.

We now formalize the notion of a compliant QEP. Without loss

of generality, we denote a QEP by a directed graph 𝒬 = (𝒪, 𝐸),
where 𝒪 is the set of operator nodes and 𝐸 denotes the set of

edges as dataflow between operators. Moreover, let 𝑄𝑜 denote the

(sub)query corresponding to a tree with operator 𝑜 as its root node

and let 𝑙𝑜 describe the location where the processing of an operator

𝑜 happens. Consider the QEP in Figure 1(b). For the (projection)

operator 𝑜2 we have 𝑄𝑜2 = Π𝑐,𝑛 (𝐶) and 𝑙𝑜2 = N. For two operators

𝑜, 𝑜 ′ ∈ 𝒪, we denote by𝑜 → 𝑜 ′, if the output of operator𝑜 is directly
consumed by operator 𝑜 ′. We further denote by→∗ the reflexive
transitive closure of→. Continuing our example, we have 𝑜1 → 𝑜2
and 𝑜1 →∗ 𝑜8. For each operator 𝑜 ∈ 𝒪, let in(𝑜) = { 𝑜 ′ | 𝑜 ′ → 𝑜 },
ins(𝑜) = { 𝑜 ′ | 𝑜 ′ →∗ 𝑜 }, and out(𝑜) = 𝑜 ′ : 𝑜 → 𝑜 ′. For instance
in Figure 1(b), we have in(𝑜4) = { 𝑜2, 𝑜3 }, ins(𝑜4) = { 𝑜1, 𝑜2, 𝑜3 },
and out(𝑜4) = { 𝑜7 }. Finally, for a non-leaf operator 𝑜 denoted by

𝑈𝑜 = {𝑜 ′ | 𝑜 ′ ∈ ins(𝑜) and 𝑙𝑜′ = 𝑙𝑜′′ ∀𝑜 ′′ ∈ ins(𝑜 ′) ∪ { 𝑜 ′ } and
𝑙out(𝑜′) ≠ 𝑙𝑜′′ ∀𝑜 ′′ ∈ ins(out(𝑜 ′)) ∪ { out(𝑜 ′) }}

the set of its descendant operators where𝑄𝑜′ is a subquery pertain-

ing to a single database with all its operators processed at location

𝑙𝑜′ . As example, in Figure 1(a), we have 𝑈𝑜3 = { 𝑜1, 𝑜2 } and in

Figure 1(b), we have𝑈𝑜7 = { 𝑜2, 𝑜3, 𝑜6 }.
For𝒬 = (𝒪, 𝐸) to be compliant, we want that for all 𝑜 ∈ 𝒪, its ex-

ecution at location 𝑙𝑜 does not violate any dataflow poli Definition 1

formally captures this.

3
For notational simplicity, we also use the notation 𝐷 to denote the schema in the

context of algorithm 𝒜.
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Definition 1. A query execution plan𝒬 = (𝒪, 𝐸) is compliant
if for all operators 𝑜 ∈ 𝒪 one of below conditions is satisfied:

𝑙𝑜 = 𝑙 in(𝑜) = ∅ and 𝑙 is the table’s source location (c1)

𝑙𝑜 ∈ ∩𝑜′∈𝑈𝑜
𝒜(𝑄𝑜′, 𝐷𝑙𝑜′ ,P𝑙𝑜′ ) (c2)

In the above definition, Condition c1 captures the fact that the execu-

tion of a leaf (tablescan) operator is always compliant at the table’s

location. Condition c2 ensures that any data that flows into a non-

leaf operator 𝑜 at location 𝑙𝑜 must be compliant with respect to the

dataflow policies associated with its data sources. For example, in

QEP of Figure 1(b): leaf operators 𝑜1, 𝑜2, and 𝑜3 satisfy Condition c1;

𝑜2 satisfies Condition c2 as 𝑁 ∈ 𝒜(𝐶, 𝐷𝑁 ,P𝑁 ) = {𝑁 }; 𝑜4 satis-
fies Condition c2 as 𝐸 ∈ 𝒜(Π𝑐,𝑛 (𝐶), 𝐷𝑁 ,P𝑁 ) ∩𝒜(𝑂,𝐷𝐸 ,P𝐸 ) =
{𝑁,𝐴, 𝐸 } ∩ { 𝐸 }; and so on.

3.3 Compliant Query Processing Problem
Having defined a compliant QEP, we can formally define the com-

pliant query processing problem that we focus on as follows:

Problem Statement. Given a query 𝑄 over geo-distributed
databases 𝐷1, 𝐷2,. . . ,𝐷𝑛 , where each database 𝐷 is associated with a
set of dataflow policies P𝐷 , find an optimal QEP𝒬 that is compliant.

Discussion. Our goal is to find the best possible execution plan

with respect to a given cost model that is compliant with dataflow

policies. In this paper, we consider traditional cost models (see

Section 6) that determine total query execution cost. Our methods,

however, are general in that they can also be adapted to other cost

models (e.g., that determine query response time).

4 POLICY SPECIFICATION
We now discuss how a user (e.g., a data information officer) can

specify dataflow policies in a convenient way. Recall that a dataflow

policy is a set of tuples P𝐷 = { ⟨𝒟, 𝐿𝒟 ⟩ }, where 𝒟 specifies the

data in𝐷 that can be transferred to locations 𝐿𝒟 . We propose policy

expressions as a simple and intuitive way to specify P𝐷 .

Scope. A crucial aspect in adhering to dataflow policies is to first

transform the data via masking functions that renders it suitable

to another location, i.e., suitable for a SHIP operator. In this paper,

we confine to masking via relational operations (e.g., project, ag-

gregate, or filter) that preserve the query semantics. For instance, a

projection operator can mask certain columns by projecting them

out before being consumed by a SHIP operator. We basically define

two kinds of policy expressions: simple and aggregate expressions.
Generally speaking, a simple expression is of the form of a Select-

Project query that can specify restrctions pertaining to certain table,

rows and/or columns. An aggregate expression is of the form of a

Select-Project-GroupBy query and further allows specifyng restric-

tions pertaining to aggregated information. We detail these two of

expressions in the following two subsections.

Disclosure Model.We focus on which and where data are allowed
to be shipped. We propose attribute-based specification to express

policies and follow a conservative approach. In other words, we

assume that by default no attributes are allowed to be shipped

anywhere unless specified otherwise by the policy. We note that in

some cases negative instances, i.e., specifying what is not allowed,

may be more convenient. This can be handled by an additional

preprocessing step under a closed world assumption.

4.1 Simple Expressions
We first look at simple expressions that allow for shipping certain

rows and columns of a table to another location without violating

any dataflow policy. We define the syntax of a simple expression as

a Select-Project (SP) query:

ship attribute list from table to location list
where condition list

This expression specifies cells, i.e., rows and columns, of a table

to be shipped without affecting the query semantics.
4
The specified

cells from the table in the from clause (i) belong to both columns

in the ship clause and tuples that satisfy the predicates in the

where clause, and (ii) can be shipped to locations in the to clause.

Intuitively, if a subquery accesses only the specified cells, then its

output can be shipped to locations specified in the expression.

Example 1. Consider policy P𝑁 from Section 2, which does not
allow for shipping the account balance information of customers
outside North America. Suppose the policy also allowed for shipping
customer’s mktsegment and region information to Europe for CarCo’s
commercial customers. We can use the following policy expressions:

ship custkey,name from Customer C to Asia, Europe

ship mktseg, region from Customer C to Europe
where mktseg=‘commercial’

The first expression specifies the cells corresponding to the custkey
and name column of tuples in Customer table. The second expression
specifies the cells corresponding to the mktseg and region columns
of the tuples in the Customer table that satisfy the predicate 𝑝 ≡
𝑚𝑘𝑡𝑠𝑒𝑔 = ‘𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 ′. Given these expressions, a query that ac-
cesses only the name column of the Customer table is legal with respect
to Asia and Europe. Similarly, a query that additionally accesses the
mktseg and region columns is only legal with respect to Europe if the
specified cells satisfy predicate 𝑝 . For example, the output of the query
Π𝑐,𝑛

(
𝜎𝑛 LIKE ‘𝐴%′ (𝐶)

)
can be shipped to all locations, the output of

Π𝑐,𝑛,𝑟

(
𝜎𝑛 LIKE ‘𝐴%′ (𝐶)

)
cannot be shipped outside of North America,

and output of Π𝑐,𝑛,𝑟

(
𝜎𝑛 LIKE ‘𝐴%′∧𝑚𝑘𝑡𝑠𝑒𝑔=‘𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 ′ (𝐶)

)
must only

be shipped to Europe.

4.2 Aggregate Expressions
Although simple expressions are sufficient to express a large variety

of dataflow policies, there are policies that allow for shipping of

aggregate information only. For these cases, we introduce aggregate

expressions that allow us to specify aggregations over columns.

Similar to simple expressions, aggregate expressions do not affect

the query semantics. The syntax of an aggregate expression is

similar to a Select-Project-GroupBy (SPG) query and is given as:

ship attribute list as aggregates aggregate types
from table to location list where condition list
group by attribute list

In the above syntax, the list of attributes in the ship clause

specifies cells of columns that should be aggregated before being

shipped to locations in the location list. The as aggregate clause
specifies aggregation functions that should be used to aggregate

4
For exposition, we restrict to expressions over a single table. This is not a limitation:

one can specify a policy expression over more than one base table. In this case, the

condition list in the where clause of the expression must contain the join predicate.
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specified cells. As before, the specified cells must belong to columns

in the attribute list for the tuples that satisfy the predicate in its

where clause. Lastly, the group by clause specifies lists of grouping

attributes for which the specified cells can be grouped by zero, one

or more attributes from its attribute list.

Example 2. Consider again the Customer table from Section 2 and
assume that account balance information can be shipped only after
aggregating. A possible expression is:

ship acctbal as aggregates sum, avg from Customer C
to * group by mktseg, region

The above expression specifies how values of the acctbal column of
the Customer table can be shipped outside. In particular, it spec-
ifies that (i) acctbal should be aggregated via the functions SUM
or AVG and (ii) the cells of the acctbal column can be grouped by
mktsegment and/or by nationkey. For example, output of the queries
Gsum(𝑎𝑐𝑐𝑡𝑏𝑎𝑙) (𝐶) and 𝑟𝑒𝑔𝑖𝑜𝑛Gavg(𝑎𝑐𝑐𝑡𝑏𝑎𝑙) (𝐶) can be shipped to all lo-
cations, whereas of Gsum(𝑎𝑐𝑐𝑡𝑏𝑎𝑙)

(
𝜎𝑛𝑎𝑚𝑒=‘𝑎𝑏𝑐′ (𝐶)

)
and Π𝑎𝑐𝑐𝑡𝑏𝑎𝑙 (𝐶)

cannot be shipped at all.

5 POLICY EVALUATION
We now turn our attention to evaluating dataflow policies. In what

follows, we assume that we are given: a query 𝑞; the schema of

database𝐷 that contains tables referenced by𝑞, and; the set of policy

expressions P applicable to data in 𝐷 . Given this input, the goal

of policy evaluation algorithm 𝒜 is to output the list 𝒜(𝑞, 𝐷,P)
of locations to which the query’s output 𝑞(𝐷) can be shipped to.

Notations. Before delving into our policy evaluation algorithm,𝒜,

we first introduce some necessary notations. Let 𝐴𝑞 denote the set

of attributes that appear in the output expressions of a query 𝑞, and

𝑃𝑞 denote the query predicate. When 𝑞 is an aggregate query, we

further denote by 𝐺𝑞 the set of attributes that appear in its group
by clause and by 𝑓𝑎 the aggregate function associated with attribute

𝑎 ∈ 𝐴𝑞 \𝐺𝑞 .
5
Likewise for a policy expression 𝑒 , we denote by 𝐴𝑒

the set of its ship attributes, by 𝐿𝑒 the set of its to locations, and by
𝑃𝑒 its predicate. For aggregate expressions, we extend the notation

and denote by 𝐺𝑒 the set of its group by attributes and by 𝐹𝑒 the

set of its aggregate operations specified in as aggregates clause.

Evaluation Process. Algorithm 1 summarizes our policy evalua-

tion algorithm. As an example, consider the policy expressions 𝑒1—

𝑒4 (left column of Table 1) that apply to a relation𝑇 (𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹 ).
At a high level, for a given query, the algorithm goes over all expres-

sions and determines the set of legal locations in an attribute-wise

fashion, i.e., from ship attributes of all the expressions that appear

in the output expression of the query. In more detail, we associate,

with each attribute 𝑎 in the output expression of the query, a set 𝐿𝑎
of locations to which it can be legally shipped (line 1; Algorithm 1).

We then look for policy expressions that have ship attributes ap-
pearing in 𝐴𝑞 (line 2). Next, we check if the rows specified by the

query predicate are also specified by the predicate of each expres-

sion. That is, we check the logical implication 𝑃𝑞 =⇒ 𝑃𝑒 (line 3).

If the test passes, we then consider three cases:

(1) Selection Query & Simple Expression. In case of a selection
query and a simple expression (lines 4–5), we simply associate

5
For notational convenience, we assume that an attribute is associated with only one

aggregate function.

Algorithm 1 Policy evaluation algorithm.

Require: 𝐷 , P , 𝑞 Ensure: set𝒜(𝑞, 𝐷,P) of legal locations
1: for all 𝑎 ∈ 𝐴𝑞 do 𝐿𝑎 ← ∅
2: for all Expression 𝑒 ∈P such that 𝐴𝑞 ∩𝐴𝑒 ≠ ∅ do
3: if 𝑃𝑞 =⇒ 𝑃𝑒 then
4: if 𝑒 is a simple expression then
5: for all 𝑎 ∈ 𝐴𝑞 ∩𝐴𝑒 do 𝐿𝑎 ← 𝐿𝑎 ∪ 𝐿𝑒
6: else if 𝑞 is an aggregation query then
7: if 𝐺𝑞 ⊆ 𝐺𝑒 then // includes empty subset
8: for all 𝑎 ∈ 𝐴𝑞 ∩ (𝐴𝑒 ∪𝐺𝑒 ) do
9: if 𝑎 ∈ 𝐺𝑒 or (𝑎 ∈ 𝐴𝑒 ∧ 𝑓𝑎 ∈ 𝐹𝑒 ) then
10: 𝐿𝑎 ← 𝐿𝑎 ∪ 𝐿𝑒
11: 𝒜(𝑞, 𝐷,P) ← ⋂

𝑎∈𝐴𝑞
𝐿𝑎

the locations in the expression’s to clause with each of the ship
attributes that appear in the query’s output expression. For example,

consider query 𝑞1 from Table 1. Columns 𝐿𝐴 , 𝐿𝐶 , and 𝐿𝐷 (below 𝑞1)

show locations associated with output attributes 𝐴, 𝐶 , and 𝐷 of 𝑞1,

resp. For example, after processing 𝑒2, we have 𝐿𝐴 = { 𝑙1, 𝑙2, 𝑙3, 𝑙4 }.
(2) Aggregate Query & Simple Expression. In case of an aggre-

gate query and a simple expression, we proceed as in the first case

simply because the expression’s ship attributes are “less” aggre-

gated than that in the query. For example, consider the aggregate

query 𝑞2 shown on top of Table 1 (right). We associate locations 𝑙2,

and 𝑙3 with attribute 𝐶 after processing 𝑒1.

(3) Aggregate Query & Aggregate Expression. In case of an

aggregate query and an aggregate expression (lines 6–10), we first

check whether the group by attributes in the query are a subset

of the group by attributes of the expression.
6
This check is nec-

essary because: (i) the grouping attributes are implicitly allowed

to be shipped for the specified ship attributes, and (ii) the ship
attributes can only be grouped by the grouping attributes. Then,

for attributes in the expression’s group by clause that also ap-

pear in the query’s group by clause, we associate the locations

in the expression’s to clause. For ship attributes that appear in

the query’s output expression, we additionally check if they are

aggregated via an operation that is allowed by the expression. If so,

we assign expression’s to locations to those attributes. For example,

consider the aggregate query 𝑞2 shown on top of Table 1 (right).

After processing the expression 𝑒4, we associate locations 𝑙1 and 𝑙2
with attributes 𝐶 , 𝐹 , and 𝐺 : As an example, the last three columns

in Table 1 show locations associated with output attributes of 𝑞2.

Once we have processed all expressions, we check if the set 𝐿𝑎 of

associated locations for all output attributes 𝑎 ∈ 𝐴𝑞 are non-empty.

In such a case, we return their intersection as the set of locations

that are legal w.r.t. 𝑞. For example, the output of query 𝑞1 in Table 1

can be shipped to location 𝑙3 and of query 𝑞2 to locations 𝑙1 and 𝑙2.

Discussion. We note the completeness of our policy evaluator

depends on the logical implication test (line 3 in Algorithm 1). In

this work, we use a simple, yet effective technique similar to that

described in [24]. This technique is sound but incomplete in some

cases. For instance, the implication test fails for 𝑃𝑞 ≡ (𝐴 = 5∧𝐵 = 3)
and 𝑃𝑒 ≡ 𝐴+𝐵 = 8. Still, the problem of testing logical implications

is orthogonal to the problem we focus on in this paper.

6
This includes empty subset for cases when query has aggregation over entire column.
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Expression 𝑒 𝑞1 ≡ Π𝐴,𝐶,𝐷 (𝜎𝐵>15 (𝑇 )) 𝑞2 ≡ 𝐶G
sum(𝐹 * (1−𝐺 )) (𝑇 )

𝐿𝐴 𝐿𝐶 𝐿𝐷 𝐿𝐶 𝐿𝐹 𝐿𝐺

𝑒1 ≡ ship A, B, C from T to 𝑙2, 𝑙3 { 𝑙2, 𝑙3 } { 𝑙2, 𝑙3 } - { 𝑙2, 𝑙3 } - -

𝑒2 ≡ ship A, B from T to 𝑙1, 𝑙2, 𝑙3, 𝑙4 { 𝑙1, 𝑙2, 𝑙3, 𝑙4 } { 𝑙2, 𝑙3 } - - - -

𝑒3 ≡ ship A, D from T to 𝑙1 𝑙3 where B > 10 { 𝑙1, 𝑙2, 𝑙3, 𝑙4 } { 𝑙2, 𝑙3 } { 𝑙1, 𝑙3 } - - -

𝑒4 ≡ ship F, G as aggregates sum, avg from T to 𝑙1, 𝑙2 group by E, C { 𝑙1, 𝑙2, 𝑙3, 𝑙4 } { 𝑙2, 𝑙3 } { 𝑙1, 𝑙3 } { 𝑙1, 𝑙2, 𝑙3 } { 𝑙1, 𝑙2 } { 𝑙1, 𝑙2 }
𝒜(𝑞𝑖 , 𝐷,P) { 𝑙3 } { 𝑙1, 𝑙2, 𝑙3 }

Table 1: Illustration of policy evaluation algorithm.

6 COMPLIANT QUERY OPTIMIZATION
We now describe our compliance-based optimizer for distributed

query processing. We follow the two-phase optimization process,

which is well studied in the distributed query optimization lit-

erature [9, 12, 21, 30, 35]. At a high level, in the first phase, the

algorithm finds an optimal plan, in terms of join orders and join

methods, using a cost model, but ignoring data shipping cost. This

phase assumes that all tables are stored locally (as in centralized

query optimization). In the second phase, the algorithm finalizes

the previously found optimal plan by selecting sites (taking into

account data transfer and scheduling costs) to execute the QEP.

Yet, to produce a compliant QEP, we have to adapt this two-

phase optimization process. We essentially need to select sites for

executing plan operators such that all conditions in Definition 1

are satisfied. However, this is far from being trivial. To see its non-

triviality, recall the example from Section 2 and the two query plans

in Figure 1. Suppose the first phase produces the QEP in Figure 1(a)

(ignore the SHIP operators for now). In this case, it is impossible

to decide an optimal sites selection such that dataflow policies are

not violated. For example, in Figure 1(a), any site where operator

𝑜3 is executed will violate either P𝑁 or P𝐸 or both. On the other

hand, suppose now that the first phase produces a plan as shown

in Figure 1(b) (ignoring the SHIP operators), we can indeed find a

compliant QEP. The challenge resides in enabling the first phase

to produce a plan such that in the second phase an optimal site

selection always leads to the best possible
7
compliant plan.

Solution Overview. We use the Volcano optimizer generator [25]

to tackle the above challenge (Section 6.1): We generate a top-down

optimizer that, for a given logical expression and a physical prop-

erty vector, produces the best possible QEP . Figure 3 illustrates

how we use the Volcano optimizer generator to build such an op-

timizer, which we refer to as plan annotator (Section 6.2). Overall,

the plan annotator receives a logical plan as input and outputs an

annotated (physical) QEP. Our plan annotator uses the traditional

cost model to determine query execution cost (assuming that all

tables are stored locally) in which cost functions are based on input

cardinalities.
8
This annotated QEP, along with join order and join

methods, specifies a set of compliant sites (as annotations) for each

operator in the plan. This annotation process represents the first

phase of our two-phase optimization process. The second phase is

composed of the site selector component (Section 6.3), which final-

izes the location of each plan operator using dynamic programming,

to produce a compliant QEP.

7
In the search space of explored plans and with respect to the cost model.

8
As we use the Volcano optimizer generator, one can use other cost-models. In this

paper, we focus on how to adapt existing cost functions.

6.1 A Volcano-Based Optimizer
Let us first detail how we adapt the Volcano optimizer generator for

geo-distributed settings. Figure 3 depicts this adaptation using beige

and blue boxes. In particular, we perform the following adaptations:

(i) We introduce new abstract logical properties for annotating

operators (properties box); (ii) We adapt each physical operator’s

cost function, which “forces” the generated optimizer to chose plans

with operators that are annotated (cost functions box), and; (iii) We

introduce a set of rules that allow us to determine annotations in a

way that Conditions c1 and c2 are met during plan enumeration

(annotation rules box). Below, we explain each of these.

Properties.We introduce execution and shipping traits, which are

associated with each plan operator. While an execution trait is a
logical property that describes where an operator can be legally

executed, a shipping trait describes where the output of an operator

can be legally shipped. More formally, for an operator node 𝑛, we

denote its execution trait with set ℰ𝑛 and its shipping trait with

set 𝒮𝑛 . For example, Figure 4 shows a simplified search space of

alternative plans for the example query𝑄𝑒𝑥 . Here, project operator

(node 3) has an execution trait ℰ3 = {𝑁 }, which means it can be

legally executed in North America. Likewise, it has shipping trait

𝒮4 = {𝑁, 𝐸 } (see node 4 on top of the projection), which means the

output after the projection operator can legally be shipped to North

America and Europe. Note that based on dataflow policies, operator

nodesmay have zero, one, ormultiple execution and shipping traits.

Annotation Rules. They enable the optimizer to derive execu-

tion and shipping traits for plan operators during the optimization

process. These rules work in a similar fashion as algebraic transfor-

mation rules. The optimizer via its rule engine matches an operator

node with an annotation rule to derive its shipping and execution

traits. We introduce four annotation rules:

AR 1: A leaf operator node 𝑛 (i.e., tablescan operator) is associated
with an execution trait ℰ𝑛 = { 𝑙 }, where 𝑙 is the table’s source loca-
tion. The rule is based on Condition c1 and the observation that a

tablescan can always be legally executed where the table is.

AR 2: An operator node 𝑛 is associated with an execution trait ℰ𝑛 =

ℰ𝑛 ∪
{
𝑙 | 𝑙 ∈ ∩𝑛′∈in(𝑛)𝒮𝑛′

}
. This rule enforces that an operator

can be executed at a location 𝑙 only if all of its inputs can be legally

shipped to 𝑙 . For example, joining data from EU and Asia in US can

only be legal when both data can be legally shipped to US.

AR 3: An operator node 𝑛 is associated with a shipping trait 𝒮𝑛 =

𝒮𝑛 ∪ ℰ𝑛 . This rule is based on the observation that an operator’s

output can always be legally shipped to the location where it can be

legally executed. For example, the output of a projection in North

America can be legally shipped to North America.
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Figure 3: Building a compliance-based optimizer.
AR 4: A operator node 𝑛 is associated with a shipping trait 𝒮𝑛 =

𝒮𝑛 ∪ {𝑙 | 𝑙 ∈ 𝒜(𝑄𝑛, 𝐷,P𝐷 ), 𝑄𝑛 is a local query over 𝐷}. This
rule derives shipping traits based on dataflow policies. It is crucial

for satisfying Condition c2 for cross-database operations. In contrast

to other rules, which are based on the expression tree’s structure,

this rule invokes the policy evaluation on query subexpressions

pertaining to a single data source.

Compliance-Based Cost Function.Whenever a plan is explored

using transformation rules or enforcers, the optimizer invokes an

operator’s cost function and uses its estimated cost for pruning

the search space. We extend these cost functions to consider an

operator’s execution trait, to prevent the optimizer from discarding

a (sub)plan in which operators are not yet annotated. In essence, the

cost function evaluates an operator’s cost to be infinite if ℰ𝑛 = ∅.

6.2 Plan Annotator – Optimization Phase 1
As discussed earlier, we use the Volcano optimizer generator, with

our adaptations discussed above, to generate the plan annotator.

The latter receives as input a logical plan and a compliance-based

optimization goal to output an annotated QEP.

Compliance-Based Optimization Goal. It is worth noting that

the goal of the plan annotator is to produce an annotated plan. To do

so, we set the optimization goal as a physical plan property vector

that specifies the requirement of a non-empty shipping trait, along

with desired physical properties (e.g., sort order). As we derive

the execution and shipping traits in a bottom-up fashion (recall

Rules 1–4), associating a non-empty shipping trait with the root

operator is crucial: It allows the optimizer to consider a plan only

when all of its operators are annotated.

Optimization Process. We now illustrate the optimization pro-

cess of the plan annotator using our running example. Given a

logical expression and the compliance-based optimization goal, the

plan annotator starts with the initial expression tree. For example,

Figure 4 shows the initial expression tree for query 𝑄𝑒𝑥 using dot-

ted lines. Starting with an initial expression tree, the plan annotator

repeatedly applies rules via Volcano’s rule engine to enumerate the

search space of QEPs. The white boxes in Figure 3 illustrate these

rules, which are (i) algebraic equivalence rules (e.g., filter pushdown

and join commutativity), (ii) implementation rules for converting

logical operator nodes to physical operator nodes (e.g., converting

logical join to hash join), and (iii) enforcer rules that can “enforce”

the input to have certain physical properties (e.g., sort order). Fig-

ure 4 also illustrates a simplified search space of QEPs for𝑄𝑒𝑥 :
9
we

use numbers to refer to specific nodes in the text below.

Whenever a new subexpression is generated, the optimizer (via

its rule engine) also applies the annotation rules for each new plan

operator to derive its execution and shipping traits. For example, in

Figure 4: Node 1 (tablescan operator; Customer table) has execution

9
For brevity, we do not show equivalence nodes in Figure 4.
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Figure 4: Simplified search space for 𝑄𝑒𝑥 .
trait ℰ1 = {𝑁 } as the Customer table is located in North America

(Rule 1) and has shipping trait 𝒮2 = {𝑁 } (rule 3); Node 3 has

execution trait ℰ3 = {𝑁 } (rule 2); Node 4 has shipping trait 𝒮4 =
{𝑁, 𝐸 } because for its relational expression 𝑞 = Π𝑛,𝑐 (𝐶), we have
𝒜(𝑞, 𝐷𝑁 ,P𝑁 ) = { 𝐸 } (rule 4, and as a result of rule 2). Node 5 has

execution trait ℰ5 = { 𝐸 } as both its inputs nodes 4 and 6 have 𝑁 in

their shipping trait (i.e., {𝑁, 𝐸 } ∩ { 𝐸 }; rule 2). Here, the projection
operator is “masking” the account balance as desired by policy P𝑁 .

In a similar fashion, the root node 7 has shipping trait 𝒮7 = { 𝐸 }.
Overall, our plan annotator piggybacks on Volcano’s search en-

gine and cost-based pruning to determine an annotated plan with

least cost. Our “adapted” cost functions ensure that the optimizer

produces such a plan. It only outputs a plan when all its nodes are

annotated; otherwise, it rejects the query. In our running example,

𝑄𝑒𝑥 is legal with respect to dataflow policies and we can produce

the results legally in Europe. We show such an optimal annotated

plan using solid lines in Figure 4.

6.3 Site Selector – Optimization Phase 2
Given an annotated QEP, the site selector proceeds with the place-

ment of operator nodes. In the worst case, this can lead to an expo-

nential number of the possible compliant plans. For example, an

annotated plan with𝑚 operator nodes each with |ℰ | = 𝑘 leads to

𝑚𝑘
possibilities. Thus, instead of taking a simple greedy approach

or an exhaustive enumeration, the site selector uses dynamic pro-

gramming: It employs a memoized, recursive top-down approach.

Algorithm 2 shows this approach for site selection. The function

CostOf(𝑛, 𝑙) (lines 3–18) computes 𝐶𝑛,𝑙 as the minimum cost of

executing node 𝑛 at location 𝑙 . When 𝑛 is a table scan operator, we

have𝐶𝑛,𝑙 = 0 for 𝑙 = table’s location and otherwise∞ (line 7). For all

other operators it computes the cost by recursively computing the

minimum cost of its inputs plus the data shipping cost
10

(lines 9–

15). While computing 𝐶𝑛,𝑙 for all nodes and their set of compliant

locations, the algorithm keeps track of 𝐶∗𝑛 as the best cost for node

𝑛 and updates its optimal execution location 𝑙𝑛 accordingly (line 17).

In our running example, we show the best plan from step one using

thick solid lines and gray nodes in Figure 4. It is easy to see that

this leads to the plan shown in Figure 1(b) as a compliant QEP.

We note that our two-phase approach — like other variants [12,

35] — has less complexity but may lead to plans that have a higher

communication cost. This is because the cost functions, in the first

phase, ignore the location of data and hence join ordering might

impact communication costs.

10
We use the message cost model [12] for computing the data shipping cost; see Sec. 7.
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Algorithm 2 Site selection.

Require: Annotated plan Ensure: Compliant QEP

1: CostOf(⊤, 𝑙⊤) // ⊤ denotes a root node
2:

3: CostOf(𝑛, 𝑙)
4: 𝐶𝑛,𝑙 ← LookUp(𝑛, 𝑙)
5: if 𝐶𝑛,𝑙 not in lookup table then
6: if in(𝑛) = 0 then // Base case
7: if 𝑙 = location of basetable then𝐶𝑛,𝑙 ← 0 else𝐶𝑛,𝑙 ←∞
8: else // recursively compute cost of inputs
9: 𝐶𝑛,𝑙 ← 0

10: for all 𝑛′ ∈ in(𝑛) do
11: 𝐶′

𝑙
←∞ // min cost of an input w.r.t. a location

12: for all 𝑙′ ∈ ℰ𝑛′ do
13: 𝐶𝑙 ← ShipCost(𝑛′, 𝑙′, 𝑙) + CostOf(𝑛′, 𝑙′)
14: if 𝐶𝑙 < 𝐶′

𝑙
then𝐶′

𝑙
← 𝐶𝑙

15: 𝐶𝑛,𝑙 ← 𝐶𝑛,𝑙 +𝐶′𝑙
16: Add𝐶𝑛,𝑙 to lookup table // Update best cost𝐶∗𝑛 for operator
17: if 𝐶𝑛,𝑙 < 𝐶∗𝑛 then𝐶∗𝑛 ← 𝐶𝑛,𝑙 ; 𝑙𝑛 ← 𝑙 // 𝑛 and select site 𝑙
18: return𝐶𝑛,𝑙

6.4 Correctness
We remark that our compliance-based query optimizer is sound in

that it will never output a QEP that is not compliant. The following

theorem captures its soundness.

Theorem 1. The compliance-based optimizer never outputs a
non-compliant query execution plan.

Proof. We provide the proof by contradiction. Let us assume

that the optimizer outputs a non-compliant plan𝒬 = (𝒪, 𝐸). Then,
∃𝑜 ∈ 𝒪 such that 𝑙𝑜 ∉ ∩𝑜′∈𝑈𝑜

𝒜(𝑄𝑜′, 𝐷𝑙𝑜′ ,P𝑙𝑜′ )

As sites are selected based on execution traits; Alg. 2, line 12

=⇒ ℰ𝑜 ∩ ∩𝑜′∈𝑈𝑜
𝒜(𝑄𝑜′, 𝐷𝑙𝑜′ ,P𝑙𝑜′ ) = ∅

As traits are derived bottom-up; Rules 2 and 3

=⇒ ℰ𝑜 ∩𝒜(𝑄𝑜′, 𝐷𝑙𝑜′ ,P𝑙𝑜′ ) = ∅
=⇒ 𝒮 ′𝑜 ∩𝒜(𝑄𝑜′, 𝐷𝑙𝑜′ ,P𝑙𝑜′ ) = ∅ ,which contradicts Rule 4 □

Last, note that our approach may however be incomplete: in
some cases the optimizer may fail to find a compliant QEP, i.e, it

may safely but incorrectly reject a legal query. This is not inherent

to our adaptations to the cost-based optimization, but it relies on

transformation rules provided to the Volcano optimizer genera-

tor. For instance, consider the example query of Section 2 and its

(simplified) search space of plans shown in Figure 4. Without an

algebraic transformational rule that pushes an aggregation past a

join, the plan annotator will not output an annotated plan because

the compliance-based optimization goal will not be met. This is

because the root (node 7; Figure 4) will have an empty shipping

trait (similar to the other two plans shown in Figure 4), and thus

the optimizer will reject the query.

In our approach, we rely on existing relational algebraic equiva-

lence and query rewrite rules, which are sufficient for the dataflow

policies that can be expressed by our policy expressions. Note that,

completeness also relies on the completeness of the policy evalu-

ation algorithm 𝒜 (i.e., when logical implication test fails; recall

Discussion in Section 5).

Location DB Tables

𝐿1 db-1 Customer, Orders

𝐿2 db-2 Supplier, Partsupp

𝐿3 db-3 Part

𝐿4 db-4 Lineitem

𝐿5 db-5 Nation, Region

Table 2: TPC-H table distribution among five locations.

7 EXPERIMENTAL EVALUATION
We evaluated our optimization framework with the goal of in-

vestigating four main aspects: (i) its effectiveness in generating

compliant execution plans for a large variety of queries and policy

expressions, (ii) its overhead when compared to traditional cost-

based optimization, (iii) quality of plans, and (iv) its scalability w.r.t.

the number of policy expressions and locations. We found that:

• Our query optimizer was effective in generating compliant plans

for all queries. In contrast to that, the cost-based optimization in

50–70% of the cases produced a non-compliant plan.

• The overhead (in terms of optimization time) of our compliant

query optimizer was in the order of milliseconds when compared

to the traditional cost-based approach.

• Our approach produced the same plans as the ones produced by

the traditional cost-based approach whenever the later produced

a compliant plan.

• For cases when the traditional cost-based approach produced

a non-compliant plan, executing the compliant plan incurs an

overhead that solely depends on the query and dataflow policies.

• The scalability of our optimizer is linearly proportional to the

number of policy expressions that affect a query’s search space.

• The optimization time increased roughly linearly w.r.t. number

of locations.

7.1 Experimental Setup
Database. We consider a geo-distributed database consisting of

TPC-H tables, which (following [12]) is distributed among five local

databases as shown in Tab. 2. TPC-H data was generated using a

scale factor of 10. Note that scale factor does not impact the query

optimization. Furthermore, we consider the TPC-H schema as the

global schema and used simple GAV mappings [13] to map tables

in the global schema to tables in the local schema.
11

Query Workload. As the overhead (i.e., the increase in the opti-

mization time) incurred by our compliant query optimizer mainly

depends on the number of joins in a given query, we consider six

representative TPC-H queries in our experiments: 𝑄2, 𝑄3, 𝑄5, 𝑄8,

𝑄9, and 𝑄10. These queries have different complexities in terms of

# joins ( 𝑗 ) in their QEP. Q3 and Q10 have low complexity with 𝑗 = 2

and 𝑗 = 3, resp.; Q5 and Q9 have medium complexity with each

having 𝑗 = 5; and Q2 and Q8 have high complexity with 𝑗 = 13

and 𝑗 = 7, resp. We additionally consider 400 ad-hoc queries. We

implemented a query generator to get these ad-hoc queries. Our

query generator creates an ad-hoc query by randomly selecting

a table and joining in additional tables using the PK-FK relation-

ship. It chooses joining tables in a way that they span over two

or more locations. It then randomly selects output columns and

11
GAV mappings allows us to also specify tables that are distributed across locations;

we consider such a setup in Sec. 7.5.
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Policy Expression (𝑒)

𝑒1 ≡ ship * from db-5.nation to *
𝑒2 ≡ ship * from db-5.region to *

𝑒3 ≡ ship partkey, suppkey, supplycost from db-2.partsupp to 𝐿3, 𝐿4
𝑒4 ≡ ship partkey, mfgr, size, type, name from db-3.part to 𝐿4

where size > 40 OR type LIKE ’%COPPER%’

𝑒5 ≡ ship extendedprice, discount as aggregates sum from
db-4.lineitem to 𝐿1 group by suppkey, orderkey

Table 3: Snippet of expressions based on TPC-H data.

generates query predicates. For aggregation queries, it randomly

chooses grouping as well as aggregation attributes. It does so with

the help of a property file that is similar to the one used by our

policy expression generator (see below). 55% of the queries refer-

ences two tables, 35% referenced three, and 10% referenced four

tables. About 30% of queries were aggregation queries. Each query

on an average selected four columns as output columns and had

3–4 predicates (excluding join predicates) on average. We ran each

of our considered queries seven times and report the average.

Policy Expressions.We implemented a policy expression genera-

tor, which takes as input a (local) database schema, a property file,

an expression template (see below), and available geo-locations to

consider. It then instantiates the template by querying the data-

base. The property file specifies, among others, which attributes

can be aggregated or/and serve as grouping key, which tables can

be joined, and which range predicates can be imposed. In particular,

we generate four sets of expressions using the following templates:

(1) T – These expressions specify restrictions on the entire table:

ship * from [table] to [locations].
(2) C – These expressions restrict the shipment of certain columns:

ship [attributes] from [table] to [locations].
(3) CR– This set of expressions is similar to set C but it additionally

specify restrictions on certain rows: ship [attributes] from
[table] to [locations] where [condition].

(4) CR+A – Finally, the last set of expressions extends set CR by

additionally specifying expressions that restrict shipping to

only aggregates and include expressions: ship [attributes]
as aggregates [aggregate functions] from [table] to
[locations] where [condition] group by [attributes].

Tab. 3 shows a snippet of expressions that we used in our experi-

ments. It is worth noting that all policy expressions are of a form

that there always exists at least one compliant QEP for each query.

Implementation. We implement our compliance-based query op-

timization framework in Java (JDK 1.8). For generating the plan an-

notator (Section 6.2), we use the Apache Calcite (v1.2.3) library [6].

Calcite provides an extensible query optimizer based on Volcano/-

Cascades framework. Calcite allowed us to implement our shipping

and execution traits, annotation rules, policy evaluation algorithm,

cost model, and modifications to the optimization goal. We store

the policy expressions in an in-memory data structure. We also

compare our compliant query optimization with traditional cost-

based query optimization. For the latter (i.e., the baseline), we used

Calcite’s cost-based optimizer as-is for the first phase in the two-

phase optimization. For the second phase, we use our site selector

algorithm by considering all locations to be legal. We ran all exper-

iments on a machine equipped with two Intel i7-7560U CPUs and

16GB of main memory running Ubuntu 16.04.

Expr. set #Expr. Q2 Q3 Q5 Q8 Q9 Q10

T 8 NC C C C C C

C 10 NC C C C C C

CR 10 NC NC C C C NC

CRA 10 NC NC C C C NC

(a) QEPs produced by the traditional query optimizer
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Figure 5: (a) Traditional query optimizer’s failures: although
it can yield to compliant (C) QEPs, it also produces non-
compliant (NC) QEPs in several cases. (b)–(e) Excerpts of
QEPs for TPC-H Q2 and Q3.

7.2 Effectiveness
We first study the effectiveness of our compliance-based optimiza-

tion framework. Our main goal is to evaluate both (i) how effective

our optimizer is for generating compliant QEPs, and (ii) how does

our optimizer compare to traditional cost-based optimizers.

Results for TPC-HQueries.We report the results for all 6 TPC-H

queries for each of our policy expressions set: T, C, CR, CR+A. This

results into 24 variants, each comprising of a query and a set of

policy expressions. Set T consists of eight policy expressions (cf. 𝑒1;

Tab. 3) and all other sets consists of ten policy expressions each.

Fig. 5 shows the results of these experiments. We observed that

for all 24 variants, our approach was successful in producing a

compliant QEP. This is not the case for the traditional cost-based

optimization approach, which could not produced a compliant QEP

for 8 queries as shown in Fig. 5(a). These results clearly show the

effectiveness of our adaptations proposed in Section 6.1. We further

illustrate this using excerpts of the QEPs for TPC-H queries Q2 and

Q3 when considering the policy expressions in sets CR and CR+A,

resp. In case of Q2 (see Fig. 5(b)), the traditional query optimizer

produced a non-compliant QEP because the SHIP𝐿3→𝐿2 operation

contradicts expression 𝑒4 (see Tab. 3). Our optimizer, in contrast,

was able to yield a compliant QEP plan (Fig. 5(c)) by shipping the

supplier table to location 𝐿3 instead. In case of Q3 (Fig. 5(d)), our

optimizer enforces push down optimizations for aggregates (5(e))

whenever a policy expression specifies so (like 𝑒5 as shown in

Tab. 3) and it is possible without affecting the query semantics. This

is in contrast to the traditional optimizer, which cannot enforce

such push down optimizations (see 5(e)). Our approach can do
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so as it takes execution traits into account when computing the

cost of an operator. Recall that an operator with empty execution

traits has infinite cost, which forces our optimizer to explore more

alternatives. We also observed that our compliant query optimizer

injects projections before a SHIP operator (as in example QEP of

Fig. 1(b)) whenever attributes are restricted by a policy expression

and are not needed by the query later.

Results for Ad-Hoc Queries. We also considered the 400 ad-hoc

queries, which were equally divided among four groups. For each

group we consider one of the four sets of policy expressions. Each

set of policy expressions consists of 50 expressions, except for set T

which consists of 8 expressions. Fig. 6(a) shows the fraction of ad-

hoc queries for which a compliant QEPwas obtained under different

types of expressions. We observe that our approach successfully

finds a compliant QEP for all 400 queries. In contrast, the cost-based

approach produced a compliant QEP for ∼50% of the the queries on

average. For instance, it finds a compliant QEP for 42% of the queries

when using the expressions in set T. This was more pronounced

when using the expressions in set CR+A: it produced a compliant

QEP only for 30% of the queries.

Based on all the results above, we conclude our proposed tech-

niques (and adaptations) are effective in finding compliant QEPs.

7.3 Optimization Overhead
We proceed to evaluate the overhead of our compliant query opti-

mizer when compared to the traditional cost-based query optimizer.

For these experiments, we considered the six TPC-H queries for all

four sets of policy expressions. Fig. 6 shows the optimization time

in milliseconds and the standard error for these queries.

Minimal Overhead. Here, we are interested in assessing the over-

head that our optimizer will always incur for any incoming query.

For this we consider policies that impose no dataflow restrictions,

i.e., we consider 8 expressions of the form ship * from 𝑡 to *, one
for each table 𝑡 in the database (see Tab. 2).

Fig. 6(b) shows this minimal overhead incurred by our optimizer.

We observe it is ∼ 2× slower than the traditional query optimizer.

This is because it additionally relies on annotation rules to derive

shipping and execution traits for all operators. As a result, when

it derives a trait for each operator, it creates a new equivalence

operator node with shipping and execution traits. This leads to a 2×
increase in the plan search space. This overhead is most pronounced

for query 𝑄2 because its QEP involves 13 joins, which is far more

than the other queries we considered.

Policy Expressions Impact. We now evaluate the optimiza-

tion time when considering different types of policy expressions

(Figs. 6(c)–6(f)). Note that, for clarity, we report again the optimiza-

tion times when using the traditional query optimizer. Let us start

with the 8 policy expressions in set T (Fig. 6(c)). We observe that

the optimization time increases 1.2× as deriving traits requires

computing set intersections (recall annotation rules 1–3 from Sec-

tion 6.1). Next, we analyze the optimization times under the policy

expressions in sets C, R, and CR+A. Each set consists of 10 policy

expressions. Figs. 6(d), 6(e), and 6(f) show these results, respectively.

We observe that the increase in optimization time is more when

considering policy expressions of type C. Note the scale of axis in

Fig. 6(d). This is because when evaluating a policy expression of

type C, the implication test always passes (recall line 3 in Algo-

rithm 1). Policy evaluation is relatively cheaper for expression of

type CR and CR+A, for which the implication test fails several times

leading to rejecting a policy expression.

Overall, we consider that the overhead of our optimizer is accept-

able: it is always less than few 100 milliseconds, except for query

𝑄2, which is 900ms. Furthermore, we strongly believe that for most

geo-distributed queries, the total query execution time will offset

the increase in optimization time.

7.4 Optimization Quality
We now compare the quality of plans produced by our compliant

query optimizer with those produced by the traditional query op-

timizer. We measure quality in terms of execution cost that arises

from shipping intermediate query data between geo-distributed

sites. To measure this cost, we simulate a network following [12]

in which the cost of shipping 𝑁 bytes from site 𝑖 to site 𝑗 takes

𝛼𝑖 𝑗 + 𝛽𝑖 𝑗 × 𝑁 time. Here 𝛼𝑖 𝑗 is the start-up cost and 𝛽𝑖 𝑗 is the cost

per byte. We obtained the start-up cost by finding the time taken

by a ping request from region 𝑖 to 𝑗 and the cost per byte by finding

the time taken to transfer data from region 𝑖 to 𝑗 .12

The results are shown in Figs. 6(g) and 6(h) for the expressions

set C and CR, respectively. Note that we show scaled execution

cost w.r.t. traditional query optimization. Letters on top of each

bar denote if the plan was compliant (C) or non-compliant (NC)

(see also Fig. 5(a)). For queries Q3, Q5, Q8, Q9, and Q10 in Fig. 6(g),

and for queries Q5, Q8, and Q9 in Fig. 6(h), we observe that the

compliant plan has the same cost as that of the plan produced

by traditional query optimizer. This is expected as our approach

piggybacks on Volcano’s search engine and cost-based pruning, and

finds the same plan whenever the traditional optimizer outputs a

compliant plan. We show this using the “=” sign. For all other cases,

we observed that the cost of enforcing policies depends on the query

and policies. For instance, for Q2 in Fig. 6(h), the compliant plan had

an overhead of 18×. This stems from shipping the larger Supplier
data (∼8M tuples), which is compliant as opposed to shipping the

smaller Part data (∼8K tuples), which is non-compliant (see also

Figs. 5(b) and 5(c)). Similarly, for Q3 and Q10, the compliant plan

involved shipping data that is compliant but incurs a higher cost.

Overall, we found that out approach produced the same plans as

the ones produced by the traditional cost-based approach whenever

the later produced a compliant plan. For cases when the traditional

cost-based approach produced a non-compliant plan, executing the

compliant plan incurred an execution overhead that solely depends

on the query and dataflow policies.

7.5 Scalability
We now evaluate the impact of the number of policy expressions

and number of locations on optimization time.

Impact of #policy expressions. We considered queries 𝑄2, 𝑄3,

and 𝑄10, and measured their optimization time in presence of 12,

25, 50, and 100 policy expressions of type CR+A. We considered ex-

pressions in CR+A as they include simple and aggregate expressions.

12
Herewe considered Europe, Africa, Asia, North America, andMiddle East as locations

L1–L5, resp. in Tab. 2.
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Figure 7: Scalability w.r.t.: (a – c) the # of expressions: the number on top of each bar denotes 𝜂𝑞, |𝐸 | ; (d, e) the # of table locations.

Fig. 7 shows the results of these experiments. We first discuss

the results for 𝑄2 (Fig. 7(a)). We observe that the optimization

time increased by ∼1.5× when the number of policy expressions

increased from 12 to 25. Thereafter, upon doubling the number of

policy expressions had little effect: the optimization time increased

by up to ∼1.1× only. As we can see, this trend varies for the other

queries. To better understand this trend, we additionally computed

𝜂𝑞, |𝐸 | as the number of times a policy expression is considered by

our optimizer for a given query 𝑞. Thus, 𝜂𝑞, |𝐸 | denotes the number

of times when one ore more ship attributes are present in a query’s

subexpression and the logical implication holds. In other words, it

denotes when the policy evaluation algorithm (Algorithm 1) reaches

line 4. The number on top of each bar shows the𝜂’s value for𝑄2,𝑄3,

and 𝑄10. We observe that the increase in optimization time upon

doubling the number of expressions is proportional to the increase

in the corresponding 𝜂 values. For instance, doubling the number of

policy expressions from 12 to 25 for𝑄3 only leads to a 1.5× increase
in 𝜂. This explains why its optimization time increased compared

to when the number of policy expressions doubled from 25 to 50.

For𝑄10, the optimization time increases linearly as 𝜂 increases too.

It is worth noting that it is highly unlikely that all policies will

affect the search space of all queries. We, thus, conclude that our

optimizer scales gracefully with number of policy expressions.

Impact of # table locations. We also extended our experimental

setup in which TPC-H Customer and Orders tables are distributed

among locations L1–L5. We consider TPC-H queries Q3 and Q10

and expressions of type CR+A, and measure their optimization time.

The results are shown in Figures 7(d) and 7(e). We observed that the

optimization time increased roughly linearly with respect to the

number of locations, and this increase mainly stemmed from the

plan annotator with site selector constituting a small fraction (up to

2ms). This is because a table 𝑡 that is distributed among 𝑛 locations

is first rewritten as 𝑡1 ∪ · · · ∪ 𝑡𝑛 , where 𝑡𝑖 is a tablescan operator,

which leads to an increase in the plan space of plan annotator, and

consequently to an increase in total optimization time.

Impact of #locations in constraints. Lastly, we study how the

number of ‘to’ locations in policy expressions affect the optimiza-

tion time. We consider eight policy expression of type ship * from
𝑡 to 𝑙1, . . . , 𝑙𝑛 , for each TPC-H table 𝑡 , and vary the number of loca-

tions 𝑛 from 3–20. Figure 8 shows the results for TPC-H Q2 and Q3.

We chose these queries because they have the most and the least

number of joins. We observed that for Q2, the optimization time

increased by ∼1.6× as we increased 𝑛 from 5 to 10, and it increased

further by ∼1.7× for 𝑛 = 20. This is because the number of locations

in expressions do not impact the plan space, and the increase in

optimization time mainly stems from the computing set operations

while invoking annotation rules, which in turn depends on the

number of locations in policy expressions (recall Section 6.1). For

Q3, the increase in optimization time was ∼1.2× as we doubled the

number of locations. Note that this increase in more pronounced for

Q2 as its optimization involves computing 5× more set operations

(when deriving traits) than Q3. We also observed that the increase

in site selection time, was not linear w.r.t. the number of locations,

however, it constituted only a small fraction (up to 1.5%) of total

optimization time. For example, for Q2, it increased from 3ms (for

𝑛 = 3) to 35ms (for 𝑛 = 20).

8 RELATEDWORK
Distributed Query Processing. This is a well studied problem in

literature. A large body of work [12, 29, 30, 32–34, 41, 48, 55] has
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Figure 8: Impact of #locations in policy expressions.
focused on many aspects of the problem, including system architec-

ture, heterogeneity of data sources, query optimization, and query

execution. We refer to [35] for a comprehensive overview on the

topic. The problem has also received attention for geo-distributed

environments considering different data processing platforms[14].

In this context, Pu et al. [45] address the problem of optimal (MapRe-

duce) task placement among geo-distributed sites such that query

response time is minimized. Vulimiri et al. [59, 60] proposed WAN-

alytics and Geode, which seek to minimize data transfer costs. Sim-

ilar in spirit, Viswanathan et al. [56] proposed the Clarinet system,

which also considers WAN-aware optimization for achieving low

query response times. All these works are complimentary to our

work as they focus on various performance metrics: We primarily

focus on compliance with respect to dataflow policies. To the best of

our knowledge, none of the existing work considers constraints on

data movement. The Geode system by Vulimiri et al. [60] addresses

data movement constraints in a very limited way: their solution

restricts replication of base data but allow for arbitrary queries

(assumed to be legally vetted) on top of base data.

The closest framework to our work is PAQO [19, 20], which

allows specifying location preferences for query plan operators

using declarative preference clauses [18]. However, PAQO’s con-

straint specification is unsuitable for the dataflow constraints that

we consider in this paper. PAQO’s constraint specification allows

matching parts of the query to plan operators, which when used for

dataflow constraints, requires the user to specify location prefer-

ences for each plan operator as a part of the user query. In contrast,

we propose policy expressions to specify constraints on data and

its movement, and automatically derive the (compliant) execution

location of plan operators for a query during optimization.

Query Optimization. Among the aforementioned aspects of dis-

tributed query processing, our work is most related to query op-

timization in distributed databases. In particular, our approach to

query optimization draws upon the two-step approach [29, 30, 35],

which is a well known technique to reduce the overall complexity

of optimization in distributed databases [12]. The key difference lies

in our use of a customized Volcano optimizer (Sec. 6.1) to produce

an annotated plan (Sec. 6.2), which is subsequently processed by

the site selector (Sec. 6.3) to determine a compliant QEP.

Database Access Control. Access control mechanisms are an in-

tegral part of database systems. View-based methods use database

views to enforce authorization to the database [26]. Agrawal et al.

[3] as well as LeFevre et al. [40] introduced privacy policies at the

data cell-level, but assuming that access control of each data tuple

is determined by its owner. Fine-grained access control models

include query rewriting techniques [28, 44], extensions to SQL lan-

guage [8], and using authorization views [47]. We refer to [5] for

an in-depth literature on access control. More recently, Shay et al.

[52] advocated the use of query control as a complimentary method

for database access control. In contrast to view-based access con-

trol, which focuses on filtering query answers to answer a query,

query-based access control limits the query being asked. Our policy

expressions (Sec. 3) fall into the category of query-based access

control mechanism and can express a wide range of policies than

those considered in [52]. Moreover, our expressions are tailored

to express data movement between sites, which have not yet been

considered in none of these works on access control.

Compliance in Databases. 𝑘-anonymization and differential pri-

vacy are well known mechanisms for privacy protection. McSherry

[42] proposed the PINQ platform that provides differential privacy

guarantees. Eltabakh et al. [16] proposed a 𝑘-anonymization op-

erator that can be composed with other relational operators to

enforce privacy in databases. More recently, compliance with re-

spect to GDPR and other privacy regulations have also received

much traction [22]. Shastri et al. [50, 51] and Mohan et al. [43] ana-

lyzed various aspects of GDPR compliance w.r.t. data management.

Kraska et al. [37, 38] proposed an architectural vision for a database

that allows for auditing, deletion, and user consent management.

Schwarzkopf et al. [49] proposed abstractions to support privacy

rights. In contrast to all these works, our notion of compliance is

with respect to data movement incurred by queries. We consider

incorporating notions of privacy as important future work.

9 CONCLUSION
More and more applications require executing analytics over data

across multiple geo-distributed sites. Several systems have thus

appeared to efficiently support geo-distributed query processing.

However, they all lack support for compliance with respect to dif-

ferent data movement polices to which sites may be subjected to.

In this paper, we have investigated how to make geo-distributed

query processing compliant with dataflow policies. We have de-

scribed the foundations and formalized the problem of compliant

query processing. We then have introduced a set of techniques to

solve the problem: We have proposed policy expressions as a simple

way to express dataflow policies; We have devised an efficient pol-

icy evaluation mechanism to determine to which geo-distributed

sites a query can ship data; We have showed how to use a Volcano

optimizer generator to implement a compliance-based optimizer.

Our results on a geo-distributed application of TPC-H data have

indicated that our techniques are highly effective as well as efficient.

Our work leads to a number of other interesting follow-up re-

search problems. We list here three of them that we consider im-

portant. First, in this paper, we have considered data movement

policies that can be adhered to by masking data via relational

operations: Supporting data masking via differential privacy or

𝑘-anonymization is an important future work. Second, having a

hybrid access control mechanism comprising both query- and view-

based control is another interesting future work. Third, expand-

ing the scope of queries to beyond relational algebra, i.e., general

dataflow programs that have arbitrary user-defined functions and

iterations is also an important future work.
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