
Expand your Training Limits!
Generating Training Data for ML-based Data Management
Francesco Ventura∗

francesco.ventura@polito.it
Politecnico di Torino

Zoi Kaoudi
zoi.kaoudi@tu-berlin.de
TU Berlin & DFKI GmbH

Jorge-Arnulfo
Quiané-Ruiz

jorge.quiane@tu-berlin.de
TU Berlin & DFKI GmbH

Volker Markl
volker.markl@tu-berlin.de
TU Berlin & DFKI GmbH

ABSTRACT
Machine Learning (ML) is quickly becoming a prominent method
in many data management components, including query optimizers
which have recently shown very promising results. However, the
low availability of training data (i.e., large query workloads with
execution time or output cardinality as labels) widely limits further
advancement in research and compromises the technology transfer
from research to industry. Collecting a labeled query workload has
a very high cost in terms of time and money due to the development
and execution of thousands of realistic queries/jobs.

In this work, we face the problem of generating training data for
data management components tailored to users’ needs. We present
DataFarm, an innovative framework for efficiently generating and
labeling large query workloads. We follow a data-driven white-
box approach to learn from pre-existing small workload patterns,
input data, and computational resources. Our framework allows
users to produce a large heterogeneous set of realistic jobs with
their labels, which can be used by any ML-based data management
component. We show that our framework outperforms the current
state-of-the-art both in query generation and label estimation using
synthetic and real datasets. It has up to 9× better labeling perfor-
mance, in terms of R2 score. More importantly, it allows users to
reduce the cost of getting labeled query workloads by 54× (and up
to an estimated factor of 104×) compared to standard approaches.

1 INTRODUCTION
Machine Learning (ML) is rapidly acquiring a prominent role in data
management, being at the core of several innovative techniques [10,
18, 19, 24–26], including different aspects of query optimization. For
instance, researchers have used ML for cardinality estimation [23,
24, 46], join ordering enumeration [25, 31], cost model learning [2,
∗Work done while interning at TU Berlin.

101 103

Input Data [GB] (log scale)

0

2

4

6

8

10

Da
ys

Current practice
Our solution
Ideal cost
Collected runtime
Extrapolated runtime

(a) 500 jobs, varying input size.

102 103 104

Executed Jobs (log scale)

0

1

2

3

4

Da
ys

Current practice
Our solution
Ideal cost
Collected runtime
Extrapolated runtime

(b) 1GB input data, varying #jobs.

Figure 1: Runtimes for manually collecting query labels.

30], execution time estimation [3, 21, 33, 55], and for learning the
entire query optimizer itself [30].

However, a well-known requirement for most ML-based solu-
tions is the acquisition of valuable data to train the models on. The
effectiveness of such models depends on (i) the quantity of training
data, (ii) the quality of training data, i.e., the quality of the features
that can be extracted, and (iii) the availability of valuable ground-
truth labels to learn from. These requirements quickly become a
road blocker in the context of query optimization: Collecting a
large number of real queries with labels (e.g., jobs’ execution time
or cardinality values) is a tedious (if not impossible) task. It requires
developing and executing thousands of heterogeneous queries (or
jobs)1 to generate training data composed of queries with labels.

For example, collecting execution times or cardinality values for
10,000 jobs with 1TB of data would require more than 6 months.
Figure 1a shows that collecting labels for only 500 OLAP jobs with
input data of about 1TB would take almost 10 days. Also, Figure 1b
shows that, even with just 1GB of input data, running 10,000 jobs
can easily go over four days.2 Ideally, once the training data reaches
good performance, its size does not have to increase over time if
concept drift is not present, which is not true in reality [9, 16, 20, 22].
Therefore, the current practice of running an entire query workload
to get its labels is not only expensive but also more than two orders
of magnitude slower than the ideal. Furthermore, one has to collect
again the labels whenever the distribution of the input data and
workload changes [16, 19], making this approach impractical.

Surprisingly, the database community has made little progress
in tackling the problem of generating labeled workloads [19, 21].
Most works still assume the availability of training data exploiting
both private and public, often synthetic, datasets to develop and
test their solutions [24, 25, 30, 53]. In contrast to other domains,
where advanced data augmentation techniques play an important
role [39, 42, 45], just a few preliminary attempts have been made in
data management [21]. We still rely on task-specific benchmarking
1We henceforth use the two terms interchangeably.
2We provide the experimental setup in Section 6.1.

preprin
t

workload generators, such as TPC-H [37] or TPC-DS [36], which
produce homogeneous workloads with low variance from few fixed
patterns. However, none of these benchmarks provide any kind of
labeling and thus they require executing a huge amount of queries.

We make a step forward towards the reliability of ML-based
query optimization, where ML is used in the place of cost models
or cardinality estimation processes, via a training data generation
process. This can be achieved with a data-driven white-box query
workload augmentation which includes label estimation for each
query: (i) A data-driven approach can tailor the newly generated
workload to users’ needs by considering their workloads, input data,
and computational resources; (ii) Estimating labels, i.e., execution
times or cardinality values, avoids the onerous task of executing
a workload of thousands of jobs, and; (iii) A white-box strategy
allows users to understand and debug every step of the process.

However, developing an efficient and reliable training data gener-
ation framework is challenging for many reasons. First, how can we
generate jobs that are representative of an existing small workload?
Second, how can we take into account the real distribution of the
data while generating a new labeled query workload? Third, how
can we efficiently produce reliable labels taking into account the
performance of computing resources? Fourth, which is the smallest
set of representative queries that should be actually executed to
learn information that provides reliable labels?

We propose DataFarm, a novel framework that enables a data-
driven and white-box training data generation required for ML-
based query optimization. In detail, we (i) analyze the execution
patterns of an existing small query workload, (ii) analyze the distri-
bution of input data and fitting the characteristics of computational
resources, and (iii) significantly reduce the labeling generation time.
In summary, after giving an overview of our framework (Section 2),
we present the following major contributions:

(1) We propose a data-driven augmentation process of pre-existing
query workloads. This process learns the real execution patterns
as Markov Chains [15] and generates new heterogeneous abstract
plans exploiting real operators’ distributions. (Section 3)
(2) We present a job instantiation algorithm that allows us to create
an augmented set of realistic jobs by instantiating different variants
for each previously generated abstract plan. Also, it exploits the
user’s input data to tailor the newly generated workload to real use
cases increasing its reliability. (Section 4)
(3) We introduce an efficient labeling forecasting process based on
an active learning approach. It characterizes jobs at the operator-
level with interpretable features, actively improving forecasting
performance by executing the smallest number possible of jobs. It
also predicts the uncertainty for each forecasted label, which allows
us to optimize the accuracy of the process. (Section 5)
(4) We extensively evaluateDataFarm and demonstrate its quality
and high efficiency compared to the current state-of-the-art. The
results show the superiority of our framework: It has up to 9× better
prediction performance and saves up to 54× of time by building a
reliable dataset that is tailored to the user’s need. (Section 6)

2 OVERVIEW
The goal of DataFarm is to produce, in a reasonable time, a large
amount of training data (i.e., query workload with labels, typically

runtime) required for learned data management components. Fig-
ure 2 illustrates the process, composed by: (i) the Abstract Plan
Generator, (ii) the Synthetic Job Instatiator, and (iii) the Label Fore-
caster. We use throughout the paper the following running example.
The example input data are three tables, A.Products(id, price,
description), B.Shopping_Cart(product_id, customer_id,
quantity), C.Customers(id, age, name), referenced from now
on as Table A, B, and C, and the fields of each table are enumerated
with the corresponding lowercase letters and position id for brevity
(e.g., Products.id is A.a1). We consider a query (a dataflow job)
that filters the products with a price higher than 5, then joins tables
A and B to obtain the products currently in the users’ shopping cart,
and aggregates the results to obtain the total price considering the
ordered quantities. The black-edged nodes in the Directed Acyclic
Graph (DAG) in Figure 3 show the execution plan of this job.

The Abstract Plan Generator (Section 3) takes as input the pre-
existing (presumably small) real workload, learns the relations be-
tween the operators, and generates a number of new heterogeneous
abstract plans 1 . An abstract plan is a DAG of platform-agnostic
operators that describes an execution plan without the actual op-
erator implementation. In our example, a generated abstract plan
follows a similar structure to the original plan while it may include
new operators (operators without a black-edge in Figure 3). The
user can specify settings, such as the maximum number of plans to
generate and the maximum number of join operators in each plan.

Source
Table A

Filter
A2 > 5

Join
A.a1 B.a1

Map
O(n)

Map
O(n²)

Source
Table B

Group By
B.b1

Reduce

Sink
Table B

Figure 3: Ex-
ample DAG.

Then, the Synthetic Job Instantiator (Sec-
tion 4) takes as input the generated abstract
plans and for each of them, it creates different
job instances 2 . It combines input parameters
extracted from the input data metadata, such
as the distribution of filterable values and in-
put data entity relation schema. The content
of the black-edged nodes in Figure 3 describes
a possible instantiation. The output is an aug-
mented set of realistic jobs along with a set of
operator-level information about the instanti-
ated jobs (i.e., job instances metadata).

At last, following an active learning ap-
proach, the Label Forecaster (Section 5) chooses
few job instances through the Job Execution
Sampler 3 to execute. At the same time, it
computes the features of the job instances sam-
ple through the Feature Extractor. Next, through theModel Builder, it
trains a predictive model with the features of the executed jobs 4a
and the collected execution time 5 . The Forecaster then exploits
the features of the non-executed jobs 4b and the model 6a to
predict the missing labels (i.e., runtime). The Uncertainty Evaluator
computes the labels’ uncertainty analyzing the model 6b and the
forecasted values 7 . While still highly uncertain, the Job Execu-
tion Sampler exploits the forecasted values to incrementally sample
and execute a new small set of the most uncertain 8 . Then, the
Label Forecaster updates the predictive model and improves label
quality. The output of the whole process is an augmented dataset
of labeled jobs, tailored to the input query workload, input data,
and computational resources 9 .

preprin
t

Abstract Plans

Job Instances

Feature
Extractor

Uncertainty
Evaluator

Model
Builder

Forecaster

Label Forecaster

Settings Input Data

Abstract
Plan

Generator Job Execution
Sampler

Input Data
Meta-data

Computing Resources
Job Instances
Meta-data

3s

15s

10s

10s

Jobs Sample +
Real Runtime

Synthetic
Job

Instantiator

Real Workload

Job Instances +
Forecasted Runtime

5s

3s

Executed Job Instances

Non-executed Job Instances Forecasted Runtime

Real Runtime

1

2

3 8

9

5

4a 6b
6a

74b

Selected for execution

If high uncertainty

... s

If low
uncertainty

ML

ML

Figure 2: DataFarm’s training data generation process. The process is composed of three main components: (i) Abstract Exe-
cution Plan Generator, (ii) Synthetic Job Instatiator, and (iii) Label Forecaster.

Data
Source

?

O
pe

ra
to
r

Child Operator

Filter

Data
Source

Filter

?

Join

Map

O
pe

ra
to
r

Parent Operator

Group by

Data
Source

Filter

Join

Map

Map

Data
Source

Group by

Reduce

Data
SinkØ

D
at
a
S
in
k

Fi
lte
r

G
ro
up

by
Jo
in

M
ap

P
ar
tit
io
n

R
ed

uc
e

S
or
t-P

ar
tit
io
n

Operatort+1

Data Sink
Data Source

Filter
Group by

Join
Map

Partition
Reduce

Sort-Partition

O
pe

ra
to
r t

1.0

0.17 0.15 0.67

0.09 0.45 0.41 0.05

0.02 0.04 0.27 0.1 0.56

0.06 0.14 0.17 0.51 0.11

0.03 0.03 0.15 0.23 0.45 0.05 0.06 0.01

1.0

0.04 0.14 0.21 0.5 0.11

0.54 0.08 0.23 0.15
0.0

0.2

0.4

0.6

0.8

1.0

P
ro
ba

bi
lit
y

1 2 3

Figure 4: Abstract Plan generation with Transition Matrix.

WedesignedDataFarm in away that one can easily extend (i) the
Abstract Plan Generator to support new operators, (ii) the Synthetic
Job Instantiator to support custom UDFs and input data, and (iii) the
Label Forecaster to support different target labels, such as execution
time or output cardinality. The current implementation supports
the most common operators of Apache Flink [8], i.e., Source, Sink,
Map, Reduce, Filter, Join, GroupBy, Partition, and SortPartition. We
use DataFarm into Agora, a data infrastructure for AI sharing and
innovation [49].

3 GENERATING ABSTRACT PLANS:
IMITATING REAL WORKLOAD PATTERNS

In practice, it is common to have a workload containing few fre-
quent execution patterns (e.g., many joins and few filters). One has
to consider these patterns to build a reliable augmented workload.
The Abstract Plan Generator (APG) addresses the problem of (i) learning
execution patterns from a small real workload and (ii) generating new
plans that are representative of the real ones.

The main goal of APG is to create new plans that follow the
distribution of the operators found in the input workload, while in-
creasing their variety. Following the distribution of input workloads
prevent us from creating non-meaningful sequences of operators.
In data management systems, jobs are usually defined by logical
plans implemented as DAGs: the nodes represent unary or binary

logical operators and the links describe the input/output relations
among them. APG iteratively generates synthetic abstract plans
taking as input a few existing logical plans and analyzing their
structures and characteristics. The APG algorithm is composed of
two main phases: the learning and generation phases.
Learning phase. First, APG learns general statistics about the in-
put workload, such as the distribution of the longest path lengths
and the number of joins in each plan. Then, to learn the common
execution patterns contained in the real jobs, each logical plan is
analyzed as a Markov Chain [15]. Each node in the DAG, i.e., each
operator, represents a possible state of the system independent from
the previous and the next one. Thus, APG learns two transition
matrices [15], one for the previous and one for the following state.
In this context, a transition matrix is a square matrix used to de-
scribe all the possible transitions from an operator to another. APG
learns the probability of each possible transition by considering
its relative frequency of appearance in each input plan. The first
transition matrix, the Children Transition Matrix (CTM), contains
the probability mass function of each operator o at step t describing
its probability of transiting to any other child operator at step t + 1
(see left bottom corner in Figure 4). CTM can be queried to get
the probability P(ot+1 |ot) = CTMot ,ot+1 of moving from a given
operator ot to a child operator ot+1. The second transition matrix,
the Parent Transition Matrix (PTM), contains the probability mass
function of each operator o at step t describing its probability of
transiting to any other parent operator at step t − 1. PTM can be
queried to get the probability P(ot−1 |ot) = PTMot ,ot−1 of moving
from a given operator ot to a parent operator ot−1.
Generation phase. The generation phase follows the distribution
learned from the input workload. It takes advantage of the learned
matrices to create abstract plans that imitate the structure and pat-
terns of the already existing jobs. For each abstract plan, if not
differently specified by the user, APG defines the maximum path
length and the maximum number of joins for the new plan by
sampling the corresponding distributions discussed in the learning
phase. Figure 4 shows the main steps of this phase for our running
example. Each new abstract plan starts with a DataSource node.
Figure 4 1 shows the beginning of the generation process. Then,

preprin
t

the algorithm iteratively proceeds forward by sampling the proba-
bility mass function of the current operator CTMot and deciding
which would be the next operator ot+1 to insert in the abstract plan.
As probabilities are used as weights when sampling, a transition
having zero probability will never appear in the abstract plans.

Every time a Join operator is encountered, the algorithm starts
a new backward branch. Figure 4 2 shows the beginning of the
backward generation process. From a Join operator, the algorithm
iteratively proceeds backward by sampling the probability mass
function PTMot and selecting which would be the parent operator
ot+1. The backward generation proceeds until a new DataSource
is encountered or if half of the maximum depth is reached. As a
design choice, the algorithm does not allow for introducing further
Join operators in backward branches, producing left deep plans
only. This allows identifying, in the instantiation phase, the main
execution branch that contains all the Join operators while all
the other execution branches will just merge with the main one.
Once a backward branch is complete, the forward generation con-
tinues from the lastly introduced Join. If the maximum number
of Join operators is reached, we simply skip them when sampling
the children operators. The generation process terminates when a
DataSink is encountered or when the specified maximum depth
is reached. Figure 4 3 shows the generated abstract plan for our
running example after the final step of the generation phase.

The generation process is repeated as many times as the number
of required abstract plans θ . The output is a collection of abstract
plans P = {p0, . . . ,pθ } that needs to be instantiated.

4 INSTANTIATING ABSTRACT PLANS:
CONSIDERING REAL DATA DISTRIBUTION

The abstract plans P = {p0, . . . ,pθ } outputted by the abstract plan
generator cannot be executed yet for two reasons. First, they are
not concrete jobs for a specific system. Second, the operators’ user-
defined functions (UDFs), such as selection predicates, have not
been instantiated. To generate a representative query workload, it
is of primary importance to instantiate UDFs tailored to real data
distributions. Managing the wide range of UDFs along with their
parameters and the possible join orderings that can be implemented
is the main challenge we face when instantiating abstracts jobs.

The Synthetic Job Instantiator (SJI) addresses the problem of (i) creating an
augmented set of executable jobs for each abstract plan, and (ii) including
real input data metadata and custom UDFs in the instantiation process.

The Synthetic Job Instantiator (SJI) leverages statistical analysis
of the input data and instantiates realistic jobs including custom
UDFs. SJI also exploits input data’s metadata to ensure a realistic
instantiation for each operator making them always executable. For
example, Filter operators exploit only fields and values that can
be filtered, and Joins are performed only among joinable fields.

Given a set of abstract plans, SJI provides different heteroge-
neous job instances for each of them covering most of the possible
relevant queries that can be performed with the input data. In the
following, we first explain why input data metadata is necessary for
the instantiation process and detail how we compute it (Section 4.1).
We then discuss how the instantiation algorithm works (Section 4.2)

and describe why and which job instances’ metadata is collected
during the instantiation process (Section 4.3).

4.1 Leveraging Input Data Metadata
Besides the abstract plans, SJI also receives input data metadata,
which is necessary to tailor jobs instances to each use case (see
Figure 2). The input data metadata is composed mostly of structural
information and statistics that add great value to the instantiation
process. First, SJI has to be aware of the schema of the data: the
fields that can be joined, and the ones that can be filtered and/or
grouped. Second, it is necessary to extract statistics, i.e., table car-
dinalities, the number of distinct values for each field that can be
grouped, and the discrete distribution of the values in each field that
can be filtered. The metadata related to the input data schema is
necessary to handle all the possible join orderings and the different
combinations of input parameters while instantiating the operators.
The metadata related to cardinality and values distribution has a
two-fold function: (i) SJI exploits this metadata to decide the fields
and the values to filter on or the fields to group by; and (ii) SJI keeps
track of these decisions as jobs’ metadata, e.g., filters selectivity
or group by output cardinalities, to be able to characterize each
instantiated job at the operator level. SJI offers two interfaces to
integrate the input data metadata in the generation process: the
(i) Database Manager and (ii) Table Manager.

The Database Manager (DM) is the interface that allows users
to include a new database with its tables and their relations (Data-
base Manager in Figure 5a). SJI requires the DM to be aware of
the database schema to consider each possible join ordering. The
Table Manager (TM) is the interface that allows to include per-table
statistical metadata. Each table in the database has to be represented
with an implementation of the TM interface (Table Managers in
Figure 5a). Then, each TM implementation should include the infor-
mation about the table cardinality, the discrete distributions of each
filterable field, and the number of distinct values in each group by
field. Note that a TM defines a particular instantiation strategy for
an abstract operator and provides the necessary tools to implement
new operators’ UDF. Thus, with a minimum effort, one can pro-
vide a custom instantiation strategy for each logical operator. SJI
provides a default TM implementation for most operators.

4.2 Instantiating Abstract Plans
The instantiation process takes as input a set of abstract plans (P),
the number of instances (I) to generate for each p ∈ P , and the
input data metadata represented by aDatabase Manager and a list of
Table Managers. Figure 5a shows an example of inputs and outputs
of the instantiation process for a given abstract plan and the input
dataset described in Section 2.

For each input abstract plan p, SJI produces a collection of possi-
ble join orderings by leveraging the Database Manager. The join
orderings are represented by table sequences, where the length of
each table sequence matches the number of data sources in p. For
each job instance i ∈ I , SJI chooses a new table sequence and starts
a recursive instantiation of the execution branches (i.e. sequence of
unary operators) contained in p. The main execution branch is the
one selected in the first recursion going from source to sink. All
the remaining ones are sub-branches that start from other sources

preprin
t

Join orderings
A.a1 B.a1
B.a1 A.a1
B.c1 C.c1
C.c1 B.c1

Key a1
a2
a3

Table A
Key a1
Key c1
b1

Table B
Key c1
c2
c3

Table C

Database Manager Job Instances

Source
Table A

Filter
a2<Q50%(a2)

Join
A.a1 B.a1

Map
O(n)

Map
O(n²)

Source
Table B

Group By
B.b1

Reduce

Sink
Table B

Abstract Plan

Data
Source

Filter

Join

Map

Map

Data
Source

Group by

Reduce

Data
Sink

Synthetic Job Instantiation

c2 c3

#
D
is
t.
va
ls

c2 c3

S
el
ec
tiv
ity

Card. 1M
Table Manager C

b1

S
el
ec
tiv
ity

b1

#
D
is
t.
va
ls

Card. 0.5M
Table Manager B

a2 a3

#
D
is
t.
va
ls

a2 a3

S
el
ec
tiv
ity

Card. 40M
Table Manager A

(a)

1 2 3 4 5

Source
Table A

Filter
a2<Q50%(a2)

Join
A.a1 B.a1

Map
O(n)

Map
O(n²)

Source
Table B

Group By
B.b1

Reduce

Sink
Table B

Source
Table A

Join
A.a1 B.a1

Map
O(n)

Map
O(n²)

Source
Table B

Group By
B.b1

Reduce

Data
Sink

Source
Table A

Filter
a2<Q50%(a2)

Filter
a2<Q50%(a2)

Join

Map
O(n)

Map

Source
Table B

Group By

Reduce

Data
Sink

Source
Table A

Filter
a2<Q50%(a2)

Join

Map
O(n)

Map

Data
Source

Group By

Reduce

Data
Sink

Source
Table A

Filter

Join

Map

Map

Data
Source

Group By

Reduce

Data
Sink

Table Manager A Table Manager B Execution Branch

(b)

Figure 5: Job instantiation running our example: (a) overview of Job instantiation given one abstract plan, theDataset Operator
Manager, and the Table Managers; (b) main steps of the job instantiation.

and reach the join operators merging with the main branch. Recall
sub-branches do not contain any other join operator (see Section 3).

The recursive instantiation begins by extracting the main execu-
tion branch and the first Table Manager tm from the table sequence.
The algorithm then iterates over the abstract operators contained
in the execution branch and exploits tm to obtain a valid instance
of the current operator. Figure 5b- 1 shows the instantiation of
the first DataSource operator in the main execution branch. If a
Join operator is encountered in the main execution branch (Fig-
ure 5b- 2), the algorithm recursively starts the instantiation of the
next sub-branch that converges to it. Thus, the visit of the new
sub-branch begins from its DataSource (Figure 5b- 3), the next
Table Manager is selected, and the algorithm proceeds iteratively
instantiating all the subsequent operators. Once consumed by all
the operators in the sub-branch, the algorithm returns to the main
branch updating the old Table Manager with the one in the sub-
branch and instantiating the Join operator (Figure 5b- 4). The
job instantiation proceeds following the previous steps until the
DataSink is reached. Figure 5b- 5 shows a completed job instance.

SJI follows a pseudo-random approach to generate different job
instances for the same abstract plan. When the operator instantia-
tion requires selecting the input field or the input argument (e.g., in
the case of groupby or filter operators) and its value, the correspond-
ing Table Manager randomly chooses one of the possible fields and
samples its values. The output of the instantiation process is a set
of executable job instances J = {j0,0, . . . , jp,i } with p ∈ P, i ∈ I .

4.3 Characterizing Jobs with Metadata
During the instantiation process, all the decisions made by SJI are
recorded to be used in the next steps. The Job Instances Metadata
(see Figure 2) provides a detailed operator-level description of each
instantiated job. We can use jobs’ metadata to assess the content of
each job enhancing the interpretability of the process and ensuring
complete coverage of the input data. The jobs’ metadata is also
important to extract features for each job (as we will see in Sec-
tion 5.2). The challenge is that real cardinalities are not available for
the generated operators, apart from Source operators. The input
data metadata includes only the raw cardinalities of the input tables

and the selectivities of the filterable values on raw input data. We es-
timate all the other operator’s cardinality using textbook estimation
techniques [17].3 SJI extracts the recorded metadata during instan-
tiation from Table Managers, which contain information about the
input distribution. In detail, we record: (i) the selectivity of each
operator instance during the job instantiation; (ii) the UDF com-
putation complexity for Map-like operators, and; (iii) the estimated
output cardinality for Groupby and Reduce-like operators.

5 ACTIVE LABEL FORECASTING: LABELING
QUERYWORKLOADS

Generating a large set of heterogeneous jobs is not sufficient for the
new era of learned data management components. The runtime of
these jobs is also crucial for training supervised ML models because
it serves as the label of the training data. However, executing all
this amount of jobs is impractical: We observed in our experiments
that executing 10, 000 OLAP queries using Flink [4, 8] on a 50GB
dataset and a four-quadcore-nodes cluster takes more than a month.
We, thus, label the augmented set of job instances exploiting an
active learning approach. We iteratively label some of the jobs by
actually executing them and forecast the labels of the non-executed
jobs using an ML model.

The Label Forecaster (LF) addresses the problem of (i) characterizing jobs
by means of interpretable and representative features, (ii) finding the
smallest possible set of representative jobs to execute, and (iii) predicting
the labels along with uncertainty for the non-executed jobs.

The cost of executing a set of jobs is strictly related to the
available computational resources and data management platforms.
Defining a cost model that takes into account different platforms
and the huge amount of parameters contributing to the runtime
of a job is a complex, still unsolved, problem. Our Label Forecaster
(LF) overcomes this complexity by inferring the task-specific cost
model directly from the available data at the cost of collecting few
labeled samples necessary for the model training. In the following,
we first introduce and explain the active-learning-based strategy

3Cardinality estimation is out of the scope of this work.

preprin
t

Algorithm 1: Active labeling.
Input : jobs instances J ; computational resources R ; number of init. jobs κ ; threshold

η; early stopping threshold λ; max iterationsMAXi
Output : set of labels L

1 L ← ∅; Lex ← ∅; L̂noex ← ∅; Jex ← ∅; Jnoex ← ∅;U ← ∅; i ← 0;
2 F ← FeatureExtractor.transform(J);
3 Sex ← JobExecSampler.initialize(F , κ);
4 while not earlyStop(U , λ) or i < MAXi do
5 Lex ← Lex ∪ R .submit(Sex);
6 Jex ← Jex ∪ Sex ;
7 Jnoex ← J \ Jex ;
8 M ←ModelBuilder(F [Jex], Lex);
9 L̂noex ← Forecaster(F [Jnoex],M);

10 u ← UncertaintyEstimator(L̂noex ,M);
11 U ← U ∪ {u };
12 Sex ← JobExecSampler.nextExecs(Jnoex , u , η);
13 i ← i + 1;
14 end
15 L ← Lex ∪ L̂noex ;
16 return L

(Section 5.1). We, next, describe the feature extraction process (Sec-
tion 5.2) and present the details of the model building, forecasting,
and uncertainty evaluation (Section 5.3). We then discuss how we
sample jobs for execution (Section 5.4).

5.1 Active Learning Strategy
One of the main challenges with any data-driven solution is the
cost of labeling samples, in our case the cost (in terms of money and
time) to execute jobs. To tackle this problem, we follow an active
learning approach [14] based on quantile regression forests [35].
An active learning strategy allows the LF to incrementally execute
the unlabeled job instances by selecting only the most informative
ones. Thus, the learner, iteration after iteration, executes only the
jobs that really add new information to the ML model. This allows
the LF to reach high predictive performance with fewer training
labels w.r.t. traditional ML approaches.

Algorithm 1 describes the main steps of the active learning pro-
cess used by LF (see also Figure 2). Initially, no labels are available
in the set of jobs’ labels L. From the input set of job instances J , LF
computes the set of operator-level features F through the Feature
Extractor (line 2). Then, through the Job Execution Sampler, LF se-
lects the initial subset of the workload to execute, Sex , exploiting an
unsupervised analysis of F that maximizes the differences between
the available jobs (line 3). Next, the selected jobs Sex are submitted
to the computing resources R, their execution times are collected in
Lex (line 5), and the sets of executed jobs Jex and non-executed jobs
Jnoex are consequently updated. Via the Model Builder, LF exploits
the labels extracted from the executed jobs Lex and the correspond-
ing features F [Jex] to build the predictive modelM (line 8). At the
same time, it predicts the set of labels L̂noex given the features of
the non-executed jobs F [Jnoex] and the trained modelM through
the Forecaster (line 9). As the labels are estimated, it is important
also to evaluate the uncertainty of the predictive model in the fore-
casting process. LF computes the uncertainty u for each forecasted
label in L̂noex using the Uncertainty Evaluator (line 10). We dis-
cuss the details about theModel Builder, Forecaster, and Uncertainty
Evaluator in Section 5.3. Before completing an iteration, LF selects
the jobs with the highest uncertainty (line 12) to execute them and
to update the predictive model increasing its performance in the
next iteration. This iterative learning process between lines 4-14

is repeated until the model’s uncertainty U matches a given early
stopping condition λ or if the maximum number of iterationsMAXi
is reached. The output of the algorithm is the union of the set of
extracted labels and the set of forecasted labels (line 15).

5.2 Interpretable Operator-Level Features
One of the main steps of LF is the feature extraction from each job
instance. We aim for an operator-level feature extraction process
using statistical analysis. Recall that the job instances produced by
the job instantiator have been characterized by operator-level meta-
data, which LF exploits when extracting features. Operator-level
statistics has several advantages concerning plan-level features [3]
producing complex embeddings [32] or using mixed approaches
with embeddings at query- and plan-level [30]:
(1) Operator-level statistical features describe more precisely the
characteristics of a job w.r.t. plan-level ones, including latent details
about the data processed during the execution.
(2) Statistical features are more interpretable compared to complex
embeddings leading to a white-box interpretable outcome.
(3) To build a robust embedding neural network, like the one pro-
posed in [30], an onerous training phase is required while comput-
ing statistics is much more efficient.

The cardinality of the input data exploited by each job is one-hot-
encoded setting the cardinality value if the table is used and zero
otherwise. The UDF complexity of Map operators is represented by
the order of magnitude of the number of fields in each record times
the number of records analyzed by the Map instance. The order of
magnitude is represented by powers of 10 by applying the corre-
sponding complexity function O(1), O(n), or O(n2). We represent
all other logical operators by statistics computed on the estimated
output cardinalities. The more the output cardinality estimation
for each operator is precise, the better the jobs will be character-
ized. LF exploits cardinality estimation based on the histograms
provided in the input data metadata, however, any estimation tech-
nique can be applied at this step. Notice that output cardinality
estimation is a very complex task [27, 46] extensively studied in
the literature [18, 24, 34, 46] and it is out of the scope of this work.

Among the superset of features that could be extracted by analyz-
ing the instantiated jobs, e.g., #operators, #joins, or max logical path
length, we keep only the features with the most relevant variance.
We do this by analyzing their principal components through PCA
(Principal Component Analysis). Furthermore, we remove noisy
features by checking their feature importance during the learning
process, as defined for CART algorithms [7].

5.3 Model Building and Forecasting
Forecasting jobs’ execution time is a supervised regression process
and it requires training on labeled data. The ML model at the core
of this learning process is the quantile regression forests [35] (QRF).
QRF belongs to the family of Random Forest (RF) algorithms, known
in general for their robustness and flexibility in learning very com-
plex functions with high-dimensional data [6, 43]. Moreover, RFs
are also considered white-box algorithms by explaining the per-
formed predictions through feature importance analysis [7]. The
standard RF, however, is limited by the approximation made while
predicting output labels because it performs a weighted average

preprin
t

among the decisions taken by each inner tree. Quantile Regression
Forest, instead, overcomes this issue by estimating the decisional
distribution function of the inner trees. Thus, through QRF, con-
ditional quantiles about each outcome are extracted providing the
prediction interval in which, with high probability, the forecasted
value is going to be. In practice, QRF allows understanding how
much the model is uncertain about the forecasting of execution
times, further improving the interpretability and reliability of the
proposed approach. Below, we detail the model building, forecast-
ing, uncertainty evaluation, and learning early stopping heuristics.
Training and forecasting with uncertainty. The Model Builder
trains and updates the QRF model at each iteration of Algorithm 1.

0 250 500 750 1000 1250 1500 1750
Non-executed jobs sorted by uncertainty.

1

0

1

Pr
ed

ict
ed

 v
al

ue
s (

ce
nt

er
ed

)

Threshold
Pred. interval (centerd)

Figure 6: Predictions’ uncertainty.

The model is trained
on the logarithm of
the execution time of
the set of executed
jobs. This non-linear
transformation allows
for balancing the high
disparity that usually
exists between jobs’ execution time (i.e., different jobs executed
on the same dataset can take from a few milliseconds to hours),
simplifying the learning process. The Forecaster exploits the trained
QRF model to predict the labels for the set of non-executed jobs
by applying the exponential operation to take back the estimated
values to the time domain. The uncertainty of each forecasted label
is computed by the Uncertainty Evaluator. To do so, it queries the
QRF model and extracts the prediction interval that is composed of
the first and the third quartiles (i.e., 25% and 75%) of the model’s
decisional distribution function. These quartiles correspond, respec-
tively, to the lower and upper uncertainty boundaries. Thus, each
forecasted label is characterized by the estimated value l̂ ∈ L̂noex
and its prediction interval [ulow (l̂),uhiдh (l̂)]. The smaller is the
amplitude of the prediction interval, the lower is the label’s uncer-
tainty given byu(l̂) = uhiдh (l̂)−ulow (l̂). Figure 6 shows an example
of forecasted values centered w.r.t. the mean of the predictions.
Assessing forecasting performance without ground truth. In
our case, it is not possible to use standard supervised metrics for
regression tasks, e.g., R2 score [11], for estimating the quality of
the forecasted labels of the non-executed jobs. This is because the
ground truth (i.e., the real execution time) is not available. Also,
evaluating the quality during the hyperparameter tuning phase of
LF’s model can lead to very unstable results because the number
of executed jobs would be very low compared to the non-executed
ones. Thus, LF analyzes the model’s uncertainty itself. It calculates
the model’s uncertainty ū by averaging all labels’ uncertainties:

ū =

∑L̂noex
l̂

uhiдh (l̂) − ulow (l̂)

|L̂noex |
(1)

The intuition is that a decrease in the model’s uncertainty during
the iterations of Algorithm 1 represents a more accurate prediction.
Thus, an increment of uncertainty can be a symptom of less reliable
forecasting. In this sense, the model’s uncertainty is a metric that
can be exploited to evaluate the reliability and quality of the pre-
dicted labels. Experimental results show also that while the model’s
uncertainty decrease, the percentage of variance explained by the

model, i.e., R2 score, increases confirming that the model’s uncer-
tainty is an effective metric to measure the predictive performance
in absence of ground truth values (see Section 6.6).
Early stopping active learning. Exploiting the analysis of the
model’s uncertainty, we use a heuristic to stop the incremental
learning process. The model’s uncertainty shows the tendency to
decrease while incrementing the number of executed jobs: The
more jobs are executed, the lower the uncertainty is and the highest
the model’s performance is supposed to be. However, we must find
a compromise between predictive performance and the number of
executed jobs, because every new iteration is potentially very costly
due to the jobs’ execution time. Taking a conservative approach on
the number of executed jobs, we can stop the learning process every
time the model’s uncertainty shows a significant drop. That is, we
can stop the process whenever the uncertainty is reduced more
than a specific percentage λ w.r.t. the previous iteration. In addition,
the current uncertainty has to be lower than all the previous ones.

5.4 Job Execution Sampler
Recall that the Job Execution Sampler has the role of querying the
set of instantiated jobs and selecting only the most representative
ones to be executed. A job can be representative in two different
ways: (i) if it shares similar characteristics with a larger group
of other jobs, and (ii) if its execution can reduce significantly the
model’s uncertainty. Furthermore, the set of selected jobs to be
executed has to be as small as possible because submitting jobs can
be very expensive and we want to avoid unnecessary runs. The Job
Execution Sampler follows a completely unsupervised approach in
that it does not require prior knowledge about jobs’ execution time.
It participates in two phases of the labeling forecasting: in the ini-
tialization phase (line 3 in Algorithm 1), and the model refinement
phase (line 12), which we explain below.
Initialization sampling. At the beginning of Algorithm 1, no
labels are available for any of the instantiated jobs. Users have
to provide the number of jobs κ that has to be sampled in the
initialization phase (a value of κ ≥ 50 is empirically suggested). The
initial set of jobs to execute is composed of two subsets extracted
combining two different techniques.

The Job Execution Sampler selects the first subset of jobs by
analyzing the logarithm of the jobs’Source Card. Sum feature. This
feature characterizes each job with the sum of the cardinalities
of their Source operators. We want to sample κ

2 jobs that equally
represent jobs with small, medium, and high input cardinality. Thus,
we first sort jobs by their Source Card. Sum. Then, we split the range
of logarithm of Source Card. Sum values in κ

2 uniform intervals and
select the closest job to the boundaries of each interval. This leads to
a uniform coverage of the whole distribution of input cardinalities.

The Job Execution Sampler selects the second subset of jobs
by analyzing the whole set of features available for each job. It
exploits the Principal Component Analysis [51] (PCA) to extract a
small set of principal components from the jobs’ features. PCA is
usually used to reduce the size of high-dimensional problems by
aggregating correlated features and projecting them into a lower-
dimensional space allowing to highlight latent patterns in the data.
Then, the Job Execution Sampler identifies κ

2 groups of jobs through
agglomerative clustering [41].

preprin
t

The clustering algorithm groups together jobs with correlated
characteristics while keeping separate the uncorrelated ones. At last,
the Job Execution Sampler selects the centroids of the clusters as a
sample of jobs to execute because they show average characteristics
among all the other jobs belonging to the same groups. This allows
for executing jobs with maximum inter-differences.
Model refinement sampling. During the iterative model refine-
ment process, the model is continuously trained with an increasing
number of executed jobs. To select the next set of jobs to execute, the
Job Execution Sampler analyzes the uncertainty of each forecasted
label. It sorts the non-executed jobs Jnoex on the labels’ uncertainty
u(l̂) and selects the last η percent of them to be executed in the next
iteration of Algorithm 1. Figure 6 shows an example of a threshold
above which the η = 5% percent of most uncertain jobs are selected
to be executed in the next iteration. The smaller η is, the finest is
the job selection but the larger the number of required iterations to
reach the convergence. This approach allows the model to refine
its learning process in the next iterations by analyzing the jobs that
caused a high level of uncertainty in the current step.

6 EXPERIMENTAL VALIDATION
The goal of DataFarm is to ease the use of ML in data manage-
ment systems by providing suitably large labeled training data.
Evaluating our framework is a challenge by itself as there is no
available ground truth, i.e., large query workload with its labels.
For this reason, we choose to validate DataFarm by showing (i)
the representativeness of the generated jobs along with the quality
of the estimated labels in Section 6.3 (ii) the effectiveness and the
efficiency of the generation process in Section 6.4, (iii) a detailed
comparison of our framework w.r.t. the current state-of-the-art in
Section 6.5, and (iv) an in-depth analysis in Section 6.6. We have
released DataFarm as open-source.4

6.1 Setup
We first elaborate on the different inputs and metrics we used.
Cluster setup.We ran all of our experiments usingApache Flink [4,
8] version 1.10.0 with the default settings on a four-node cluster.
Each node is equipped with a quad-core Intel Xeon 2.40GHz CPU
and configured with 16GB of main memory for each Flink worker.
Datasets and queries. We used both synthetic and real datasets
together with a small input query workload from TPC-H. Specifi-
cally, we used (i) four TPC-H datasets generated with different scale
factors, i.e., 1GB, 5GB, 10GB, 50GB, and (ii) the publicly available
IMDB database5. The four TCP-H datasets are exploited to show
that DataFarm is robust to high heterogeneity in tables cardinality
and it can thus deal with both short- and long-running jobs in the
same query workload. The IMDB dataset, instead, represents a typ-
ical real database with unbalanced data distributions. We exploit
it to test the robustness and the generality of the proposed frame-
work even in such a case. We used 6 TPC-H queries, i.e., Q1, Q3,
Q11, Q13, Q17, and Q21, which include a mix of common execution
patterns (i.e., pipelines, jobs with multiple joins and filters, groupby
aggregations, materialized views), being representative of the entire

4https://github.com/agora-ecosystem/data-farm
5https://www.kaggle.com/ashirwadsangwan/imdb-dataset

TPC-H workload. We implemented them using the Flink DataSet6
and Table7 APIs resulting in 12 Flink jobs. This very small set of
jobs constitutes the input to DataFarm. It includes all the operators
currently supported by our generator, i.e., Sink, Map, Reduce, Filter,
Join, GroupBy, Partition, and SortPartition.
Label Forecaster settings and validation metrics. We config-
ured the active label forecasting process with (i) a maximumnumber
of iterationsMAXi = 20, (ii) threshold η of 0.05 meaning that the
5% of the jobs with maximum uncertainty are executed in each
successive iteration, (iii) the number of jobs to execute during the
initialization κ set to 51, and, (iv) an early stopping condition λ
of 10% of the model’s uncertainty reduction. We used grid-search
with 3-fold cross-validation for the hyperparameters tuning of the
Label Forecaster (e.g., number of trees in Quantile Random Forest).
We experimentally picked these parameters intending to find a
good trade-off between the quality of the predicted labels and the
time required for the training data generation. In detail: The larger
the number of initial jobs is, the more information can be learned
in the firsts iterations in exchange for execution time; Increasing
η can reduce the efficiency of the process because more jobs are
executed in every iteration and the best stopping condition may be
located in between two iterations; Reducing η increases the number
of iterations and the overhead for model training; Finally, MAXi
has to be set according to the user’s maximum time budget and λ
has to be small enough to find a stop beforeMAXi is reached.

We used the R2 scores [11] between the forecasted labels and
the ground-truth execution times to validate the label forecaster.
The R2 score is a metric widely exploited in regression problems. It
measures the proportion of variance of the ground truth that has
been explained by the values forecasted by a model. The closer R2

is to 1, the better the model performance is. To obtain the ground-
truth values, we ran all the generated jobs to get their labels.

6.2 Generated Query Workloads with Labels
For the evaluation, we generated two workloads with labels:
• W1: Our framework generates 2, 000 synthetic jobs with labels
by analyzing our 12 Flink jobs and exploiting the four synthetic
TPC-H datasets as input data. Thus, for each of the input datasets,
it generates 50 abstract plans (with a maximum of 3 Join operators
and a maximum branch depth of 6 operators) and it instantiates 10
different versions for each of them.
• W2: Our framework generates 1, 000 synthetic jobs with labels
by using the transition matrices learned from the input-workload of
W1 and exploiting the IMDB dataset as input data. Thus, it generates
50 different abstract plans (with a maximum of 3 Join operators
and a maximum branch depth of 6 operators) and it instantiates 20
different versions for each of them.

6.3 Quality of Generated Query Workload
We first assess the quality of the generated query workload by
evaluating both (i) the representativeness of the generated jobs and
(ii) the accuracy of predicted labels.
Representativeness of jobs. To allow an ML-based optimizer to
properly generalize and be robust to eventual outliers the training
6https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/batch/
7https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/

preprin
t

https://github.com/agora-ecosystem/data-farm
https://www.kaggle.com/ashirwadsangwan/imdb-dataset
https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/batch/
https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/

Source Istances [%]

lineitem
17%

partsupp

17%supplier
15%

part
14%

orders

14%
customer

14%
nation9%

Filter Instances [%]

S
el

ec
tiv

ity

(0.1, 0.2]

9%
(0.2, 0.3]

29%

(0.4, 0.5]

39%

(0.7, 0.8]23%

Map Instances [%]

C
om

pl
ex

ity

O(1)
42%

O(f)
34%

O(f2)
24%

Join Instances [%]

Jo

in
s

1 Join

44%

No Joins
28%

2 Joins
20%

3 Joins8%

(a) W1

Source Istances [%]

title.principals
28%

title.akas

20%

title.ratings

19%

title.basics18%

name.basics

15%

Filter Instances [%]

S
el

ec
tiv

ity

(0.0, 0.1]

41%

(0.1, 0.2]

12%

(0.2, 0.3]

8%

(0.4, 0.5]

6% (0.7, 0.8]
17%

(0.9, 1.0]
16%

Map Instances [%]
C

om
pl

ex
ity

O(1)
42%

O(f)
34%

O(f2)
24%

Join Instances [%]

Jo

in
s

1 Join

44%

No Joins
28%

2 Joins

20%

3 Joins8%

(b) W2

Figure 7: Characteristics of generated query workloads.

Real Gen.
2

0

2

S
td

. N
or

m
. f

re
qu

en
cy

Map

Real Gen.

Filter

Real Gen.

Reduce

Real Gen.

Group by

Real Gen.

Join

Figure 8: Normalized operators’ distribution.
query workload has to be relevant to each use case: It should cover
as much as possible the features of the input workload and data.

Figure 7 shows the distributions of various characteristics for
the generated W1 and W2. We observe that DataFarm correctly
distributes the available data sources among the generated jobs:
All the input data is equally represented in the newly generated
workload W1 and W2 (Source Instances charts in Figure 7). It is
important to have a uniform representation of all the available
tables since a generated query workload has to allow ML models to
generalize in the learning process and to be robust in the prediction
process. Then, we observe that our framework reflects the distribu-
tion of the data for other operators, e.g., the Filter, Map, and Join
instances in Figure 7. In particular, we observe that the selectivity
included in the Filter instances cover the possible input values
exhaustively representing their distributions: W1 shows selectivity
values almost uniformly distributed, while W2 selectivity is con-
centrated in range (0.0, 0.1] in 41% of the cases, as real input data
distributions are skewed. Similarly, this holds for the UDFs com-
plexity of Map operators and the number of Join operators. Note
that the distributions of Map and Join operators are similar for W1
and W2 because they have been generated from the same input
workload, i.e., from the same transition matrices. We observed the
same patterns for all operators in the generated jobs.

These results reflect the power of DataFarm in capturing the
input data distribution in the generated jobs and confirm the rep-
resentativeness of the generated jobs for the user’s use case. To
further demonstrate this, we ran another experiment to study how
well our generated workloads cover the user’s workload.

Figure 8 shows how the normalized operators’ distributions in
the real query workload compared with the generated ones. We
observe that the operators’ distribution in our generated workload
has a similar mean to the operators’ distributions in the real work-
load. We also see that the first and third quartiles of the operators’
distribution in our generated workload always cover the ones of
the operators’ distributions in the real one. This shows not only the
representativeness of our generated workloads but also its coverage

Table 1: Summary of generated workloads.
Generated
Workload

Gen. Jobs # Exec. Jobs Non-Exec.
Jobs [%]

R2 (Our) R2 (TDGen)

W1 2,000 142 93 0.67 <0
532 73 0.75 0.65

W2 1,000 141 86 0.16 0.07
418 58 0.52 0.08

0 500 1000 1500
Non-executed Jobs

0.0

2.5

5.0

7.5

Ex
ec

. T
im

e
[m

s]

×105

Real
Pred. + Interval

(a) W1 – 142 executed jobs.

0 100 200 300 400 500
Non-executed Jobs

0.0

0.5

1.0

Ex
ec

. T
im

e
[m

s]

×105

Real
Pred. + Interval

(b) W2 – 418 executed jobs

Figure 9: DataFarm forecasted labels with uncertainties.

of real workloads. We also observe that our generated workloads
extend real ones with jobs that cover a wider range of cases.
Accuracy of labels. Estimating the runtimes of generated jobs is
necessary to get the labels to complete the training data. However,
as we have already pointed out, executing all generated jobs can
take weeks or even months and cost a lot of money, e.g., cloud
provisioning costs. This is why our framework predicts the labels
by executing only a few jobs from the generated query workload.

To evaluate how realistic the predicted labels are, we measure
the R2 score. Table 1 summarizes the results obtained for W1 and
W2 on the first two early stoppings. For W1, the performance of
the label forecasting process reaches R2 = 0.67 by executing only
142 jobs. This means that most of the variance of the real execution
times has been captured effectively by just executing less than 10%
of generated jobs. For W2, the first early stop proposed by the
algorithm reaches 16% of explained variance with 141 executed
jobs. Instead, if the user has more time, on the second early stop it
reaches an R2 score of 0.52 and 418 executed jobs.

The quality of the predicted labels for W1 can be shown even
more clearly by plotting them as a function of the executed jobs
shown in Figure 9a. It plots the predicted labels for each one of
the 1858 non-executed jobs along with their prediction intervals
on a time scale. We observe that, independently of the size of the
input data, almost all predicted labels, along with their prediction
intervals, show values very close to the real execution time. Consid-
ering jobs with execution times reaching more than 12 minutes, the
predictions show a very good median error of just 2 seconds while
75% of the forecasted labels remain below an error of 8 seconds.

We observe that the predicted labels have a very low uncertainty
in short-running jobs while the prediction interval increases for
long-running ones. This allows us to easily identify which are the
generated jobs with possibly very long execution times and hence
increasing the reliability of the proposed labels is important.

We observe similar results for workload W2 as shown in Fig-
ure 9b. In this case, the unbalanced distributions of the values in
the input data are reflected in the generated jobs by the increased
complexity in forecasting labels as shown in Figure 9b. From these
results, we can see that to reach an amount of explained variance
around 50%, a higher amount of executed jobs are required w.r.t the
previous workload that is constructed from synthetic input data.

preprin
t

(a) Increasing input data. (b) Increasing number of jobs.

Figure 11: Effectiveness and efficiency of the framework.

6.4 Effectiveness and Efficiency
We now show how effective and efficient the generated training
data is when used for an ML-based query optimizer that requires
a query workload with execution times. We compare DataFarm
with the common approach of manually labeling a query workload,
i.e., by executing every single query in the workload.

To evaluate this, we use our generated jobs with both the
predicted and real runtimes as two training datasets to build an ML
model that can be used by a query optimizer to predict runtime. It
is worth noting that with an initial workload of 24 jobs (6 TPC-H
queries with 4 different datasets), and thus only 24 labeled samples,
it would be impossible to train an ML model.

104 105

Real Exec. Time [ms] (Log scale)

104

105

Fo
re

ca
st

ed
 E

xe
c.

 T
im

e
[m

s]
 (L

og
 sc

al
e)

Real
Train on ground truth
Train on DataFarm labels

Figure 10: Effectiveness.

Effectiveness.We first eval-
uate the quality of our pre-
dicted labels by training two
Random Forest regressors for
W1: one with our predicted
labels and one with the real
ones (ground truth). We then
predict the runtimes of our in-
put query workload (i.e., TPC-
H queries Q1, Q3, Q11, Q13, Q17, and Q21) using each model.

We observe in Figure 10 that the model trained on the generated
workload with our predicted labels reaches a very good 73% of
explained variance. This confirms once again that the proposed
generation process is able to capture many relevant aspects of the
input. Besides, it shows that having a limited number of mislabeled
jobs does not significantly affect DataFarm’s effectiveness: The
model trained with ground-truth labels is only 1% more accurate,
reaching just 74% of explained variance.
Efficiency. We now evaluate how much time users can save when
using DataFarm instead of executing each query to obtain its run-
time. We exploit the 500 jobs executed on four different scale factors
in W1. In addition, we generate 500, 1,000, 1,500, 2,000, 2,500 jobs
using the transition matrices learned from W1 and execute them
on 1GB scale factor. We consider only the runtime of the Label
Forecaster, as it is the computationally most expensive component:
While the Abstract Plan Generator and the Synthetic Job Instantia-
tor run in the order of seconds (e.g., 70s and 129s for generating
1, 000 and 2, 000 executable jobs, respectively), the Label Forecaster
runs in the order of hours (e.g., 4h for W1 to execute 142 jobs).

Figures 11a and 11b show the results. We observe thatDataFarm
provides a linearly increasing improvement factor w.r.t. both the
size of the input data reaching 3.4× (Figure 11a) and the number
of executed jobs reaching up to 16× (Figure 11b). Interestingly,
it achieves so without losing precision, i.e., the forecasted labels’
explained variance ranges between 54% and 78%. Thus, the total

142 227 227 596
Exec. Jobs

102

103

M
ea

n
Ab

s.
Er

ro
r [

s]

 18.0 17.1

4024.2
1885.5

DataFarm
TDGen

Figure 12: DataFarm vs.
TDGen.

51 14
2

22
7

30
9

38
7

46
1

53
2

59
9

66
3

72
3

78
0

83
5

88
7

93
5

98
2

10
26

10
68

11
08

11
46

11
82

Executed Jobs

0.0

0.5

R
2 o

f p
re

d.
Ex

ec
. T

im
e

TDGen
DataFarm

(a) W1

51 97 14
1

18
2

22
1

25
6

29
2

32
6

35
8

38
9

41
8

44
6

47
2

49
7

52
1

54
3

56
4

58
4

60
2

61
9

Executed Jobs

0.25

0.50

0.75

R
2 o

f p
re

d.
Ex

ec
. T

im
e

TDGen
DataFarm

(b) W2

Figure 13: Labeling effective-
ness w.r.t. TDGen.

improvement factor is about 54× for 2,500 jobs with 50GB input
data (3.4 ∗ 16). We also extrapolate the improvement factor for 1TB
with 500 jobs and for 10,000 jobs with 1GB, leading to 3.7× and
28×, respectively (the red bars). This indicates that DataFarm’s
improvement factor increases significantly with the workload size.
For example, consider we need to generate a training workload of
10, 000 jobs, which is a common size for training datasets [12, 30, 56],
with an input data of 1TB. Thus, in this case, our framework reaches
an improvement factor of 104× (3.7 ∗ 28): It runs in less than 2
days while the current practice would require more than 6 months.
DataFarm achieves such a performance gain because it always runs
almost the same number of jobs. The number of executed jobs does
not change as long as they cover the variance of the non-executed
jobs and there is no concept drift [9, 16, 20, 22].

All these numbers show the high efficiency of our framework,
making it possible to generate training data with thousands of
heterogeneous queries while saving a huge amount of time.

6.5 Comparison with State-of-the-Art
We now compare DataFarm with TDGen [21], the only training
data generator for ML-based query optimization that we are aware
of. We generate a new set of 2, 000 jobs using TDGen and train
the ML model presented in Section 6.4. We then evaluate the mean
absolute error in estimating the costs of the real workload when
training the model with DataFarm jobs and with TDGen jobs.
Figure 12 shows the results. It is clear that DataFarm outperforms
TDGen for more than two orders of magnitude: When we execute
227 jobs and predict the performance of the rest, the ML model’s
error is up to 236× lower when trained with DataFarm jobs (17.1s)
than when trained with TDGen jobs (4, 024.2s). In fact, TDGen
originally executed 596 jobs, and still, it had a large error (1, 885s).

This shows the importance of generating plans based on a small
initial workload rather than on completely random jobs: TDGen
does not take into account either users’ real input workload or
users’ real input data. On the contrary, our framework is based
on a completely different, data-driven approach that allows us to
include both a small pre-existing workload and input data in the
generation process. Next, due to these fundamental differences, we
set a common ground by using the jobs generated by our framework
and compare their effectiveness only in labeling a given query
workload (labeling effectiveness). Lastly, we study the benefits of
taking into account users input.
Labeling effectiveness. We use workloads W1 and W2 both gen-
erated by DataFarm and forecast their labels using TDGen and our

preprin
t

active labeling approach. We measured the quality of the forecasted
labels by exploiting the percentage of explained variance, i.e., R2

score, for both W1 (Figure 13a) and W2 (Figure 13b).
Figure 13a shows that DataFarm can explain almost 70% of the

variance of the real execution times already at the first iteration,
i.e., executing just 51 jobs. In contrast, TDGen is much less efficient
requiring to execute 309 jobs to reach a significant performance,
more than 6 times the number of jobs required by our method.

Even more significant is the case of W2, where jobs have been
generated with real input data. Figure 13b clearly shows that TD-
Gen is not able to get close to the performance of our framework,
even when executing more queries. This is because real input data
(such as IMDB) is typically characterized by unbalanced value distri-
butions. Thus, both DataFarm and TDGen show a low percentage
of explained variance in the first iteration, even if our framework is
already reaching better results than TDGen. DataFarm incremen-
tally improves the prediction performance along with the number
of executed queries: It is on average 6× more accurate while reach-
ing up to 9× better prediction performance in the last iteration w.r.t.
TDGen. While TDGen remains below 10% of explained variance.
Input data’s importance. In contrast with TDGen that uses a com-
pletely random approach to generate jobs, the high effectiveness of
DataFarm partly comes from the fact that it considers the charac-
teristics of input data. To better evaluate this, we ran an experiment
with a query workload of 2, 000 jobs, which we generated using
the W2’s input queries but imposing a uniform data distribution.

0 250 500 750 1000
Jobs

0.0

0.5

1.0

Fo
re

ca
st

ed
 E

xe
c.

 T
im

e
[m

s]

×105

Real
Train on uniform input data

Figure 14: Data importance.

We then build a Quantile Re-
gression Forest model taking
this newly generated work-
load as training data along
with its real labels to evalu-
ate the best-case scenario. We
used this model to predict the
execution time for W2. Fig-
ure 14 shows the results. We
observe that the predicted la-
bels are completely skewed. It is clear that predicting execution
times forW2, learning from aworkload executed on a uniform input
data distribution, is not effective. In fact, the result shows a negative
R2 = −0.40. This means that this model has worse performance
than always predicting the average value of the ground-truth.

These results demonstrate the high complexity of the addressed
problem while showing that our approach is a step forward to
efficiently generate training data for ML-based query optimization.

6.6 In-depth Analysis
At last, we analyze different design choices of DataFarm. Figure 15
shows the model’s uncertainty during the active labeling process
and the validation scores computed to validate the obtained results.
In the next paragraphs, the effectiveness of exploiting the model’s
uncertainty as a soft quality metric, of the active labeling sampling,
and of the cardinality estimation will be discussed.
Effect of model’s uncertainty. Our framework uses the model’s
uncertainty to determine when the labels obtained so far are suffi-
cient and thus, to stop the active learning process. The results, in
Figure 15, confirm that a decrement in uncertainty corresponds, in

51 14
2

22
7

30
9

38
7

46
1

53
2

59
9

66
3

72
3

78
0

83
5

88
7

93
5

98
2

10
26

10
68

11
08

11
46

11
82

Executed Jobs

10000

20000

M
od

el
Un

ce
rta

in
ty

 [m
s] Uncertainty Early stop

(a) W1 - Model’s uncertainty.

51 14
2

22
7

30
9

38
7

46
1

53
2

59
9

66
3

72
3

78
0

83
5

88
7

93
5

98
2

10
26

10
68

11
08

11
46

11
82

Executed Jobs

0.0
0.2
0.4
0.6
0.8

R
2 o

f p
re

d.
Ex

ec
. T

im
e

Rand. samples - Estimated out card. (Baseline)
Active labeling - Estimated out card.
Active labeling - Real out card. (Top-line)

(b) W1 - R2 validation scores.

51 97 14
1

18
2

22
1

25
6

29
2

32
6

35
8

38
9

41
8

44
6

47
2

49
7

52
1

54
3

56
4

58
4

60
2

61
9

Executed Jobs

5000

10000

15000

M
od

el
Un

ce
rta

in
ty

 [m
s]

(c) W2 - Model’s uncertainty.

51 97 14
1

18
2

22
1

25
6

29
2

32
6

35
8

38
9

41
8

44
6

47
2

49
7

52
1

54
3

56
4

58
4

60
2

61
9

Executed Jobs

0.0
0.2
0.4
0.6
0.8

R
2 o

f p
re

d.
Ex

ec
. T

im
e

(d) W2 - R2 validation scores.

Figure 15: Labeling model’s uncertainty and R2 scores.

most of the cases, to an increment of the predictive performance.
For instance, the overall trends of the model’s uncertainty in Fig-
ures 15a and 15c are aligned with the trends of the R2 scores for
the active labeling approach shown in Figures 15b and 15d for W1
and W2. In other words, if the uncertainty decreases overall, the
percentage of explained variance tends to increase.
Effect of active labeling. Thanks to the data-driven strategy we
use in the Job Execution Sampler, the proposed active labeling
outperforms the baseline of randomly sampling jobs. The compar-
ison between active labeling and random sampling is shown in
Figures 15b and 15d for W1 and W2. The active labeling always
achieves better R2 scores than the random sampling, even from
the very first iterations where the number of labeled samples is
very low and the complexity of the learning process is very high.
Also, our approach reaches higher explained variance, i.e., R2, with
less executed queries. This means that both the initialization (first
iteration) and the model refinement phase (successive iterations)
are efficient strategies for selecting the set of queries to execute.
It achieves high performance already from the first iteration and
increases it successively. We also studied using a weighted random
sampling strategy of the jobs to execute, with jobs’ uncertainties
as weights, instead of sampling based on top uncertain jobs. We
measured the mean absolute error of the ML model built for a query
optimizer (as in Section 6.4). In this case, sampling top uncertain
jobs rather than using weighted sampling, reduced the error of the
ML model of 1.7×, i.e., from 29.7s to 18.0s by running 142 jobs.
This is because weighted sampling leads to the execution of also
correctly labeled jobs. However, running these jobs is lowering the
learning speed of the Label Forecaster and results in lower accuracy.
Effect of outliers. We now study the effects of outliers,
e.g., caused by computing resources contention, during the
labeling process. We consider the second labeling iteration

No 10% 25%
Outlier Jobs [%]

102

103

M
ea

n
Ab

s.
Er

ro
r [

s]

 18.0

 52.3

577.6

Figure 16: Outliers.

for W1, i.e., 142 executed jobs in Fig-
ure 15a and synthetically add a ran-
dom overhead of execution time (up to
an increment of 100%) to an increas-
ingly larger subsample of executed jobs
(i.e., 0%, 10%, 25%). We, then, train an
ML model with the workloads contain-
ing outliers and validate each resulting
model as explained in Section 6.4. For
this, we evaluate the mean absolute er-
ror (Figure 16). The results show that

preprin
t

interference during the labeling process can lead to increasingly
larger errors in the ML model. However, note that a manual collec-
tion of labels would also be affected by outliers. Besides, we observe
that the uncertainty computed by the Label Forecaster increases up
to three orders of magnitudes with 25% of outliers. This confirms
that the proposed uncertainty metric correctly reflects the model’s
performance.
Effect of cardinality estimation. Recall the label forecasting pro-
cess computes features from the estimated output cardinalities. We
now evaluate how these estimations affect the predictive perfor-
mance of the ML model and thus, the estimated labels. To achieve
this, we perform the active labeling experiments with the real car-
dinalities, which we have extracted using the Flink task manager
when each job is running. The results in Figures 15b and 15d show
that a basic cardinality estimation process affects only marginally
the learning process. For W1, the predictive performance obtained
with estimated and real operators’ cardinalities are comparable,
showing an average difference in explained variance of just 3%. In-
stead, for W2 (Figure 15d) the real cardinalities allow active labeling
to be more efficient by reaching 50% of explained variance with
182 executed jobs, while with estimated cardinalities only 20% is
reached. However, this further demonstrates that our DataFarm is
effective even with errors in the cardinality estimation process. As
the cardinality estimation is still an open problem, we expect that
by using more accurate estimation techniques the quality of the
label estimation will improve significantly. However, investigating
cardinality estimation methods is out of the scope of our paper.

6.7 General applicability
We have designed DataFarm to be task-, platform-, and hardware-
independent. One can extend the Abstract Plan Generator and the
Synthetic Job Instantiator to support any type of operator, data type,
and UDF by simply implementing the provided interfaces as well as
to instantiate jobs on any big data platform (e.g., Flink [8], Spark [54]
or Rheem [1, 2]). In addition, the Label Forecaster is completely data-
driven and does not rely on the underlying hardware. In our case, it
collects the runtimes of the generated executed jobs and, based on
this, it learns to predict the runtime of the non-executed ones regard-
less of the hardware used (e.g., CPUs or GPUs). Finally,DataFarm’s
generation process can be customized to work for other target labels
of the generated jobs. The only component affected is the Label Fore-
caster. For instance, instead of collecting the runtimes of executed
jobs, it can collect the output cardinalities during the active labeling.

51 90 13
2

17
2

20
7

24
4

27
9

31
2

34
2

37
2

40
0

42
5

45
1

47
5

49
6

51
5

53
6

55
4

57
2

59
0

Executed Jobs

0.0
0.2
0.4
0.6
0.8

R
2 S

co
re

Performance

2

4

M
od

el
Un

ce
rta

in
ty1e5Uncertainty Early Stop

Figure 17: Cardinalities labels.

In this way, it can gen-
erate training data for
learned cardinality esti-
mation components [18,
23]. Figure 17 shows pre-
liminary results of using
DataFarm to label W2
with output cardinalities instead of execution time. This shows
the extensibility of our approach.

7 RELATEDWORK
Data augmentation and dataset generation techniques with weak
supervision have been exploited in many ML domains [39, 40, 42,

45, 50]. However, just a few attempts have been done in the database
community. Most of the ML-based works in the database literature,
often rely on task-specific benchmarking workload generators, such
as TPC-H [37] or TPC-DS [36]. However, these tools are thought
of as benchmarks: they generate synthetic workload starting from
fixed execution patterns and, more importantly, they do not provide
any labels, still requiring to execute a large workload to get them.

A first attempt to synthetic workload generation with labels has
been recently proposed in [21]. In this work, the authors exploited a
heuristic approach to generate new query workloads and estimating
labels, i.e., jobs’ execution times: They execute a large number of
short-running jobs and only a few long-running ones and then
interpolate the real extracted values to estimate the labels for the
rest of the workload. However, [21] does not consider real input
workload and data, which impacts the model’s efficiency as we
observed in our experimental comparison with this work (TDGen).

Other works facing the problem of lack of labeled training sam-
ples are related to active learning approaches [14, 44]. Active learn-
ing is a common strategy employed in ML [5, 13, 28, 48] that has
been recently applied to data management problems as well [29].
In the latter, the authors address the performance degradation of
ML-based data management when incoming data differs from data
used to train the initial model. However, active learning alone does
not solve the lack of training samples. , i.e., the availability of het-
erogeneous query workload.

Many works address also the problem of predicting query work-
load performance exploiting ML algorithms [3, 21, 30, 33, 38, 47, 52,
55]. However, these works usually train and validate their solutions
on synthetic query workloads or on real workloads by manually
collecting ground-truth labels. Moreover, the solutions that rely on
deep learning approaches [30, 33, 47, 55] are not meant to be used
on small data. Thus, they are not suitable to efficiently estimate
labels by learning from few training samples, such as in Data-
Farm. Other approaches do not provide the models’ uncertainty,
e.g., [3, 38], and thus cannot be used to decide which are the jobs
to execute in our active learning approach.

8 CONCLUSION
We presented an innovative query workload augmentation frame-
work with efficient labeling estimation. DataFarm aims at fulfilling
the increasing need for large training data to train ML-based data
management components. It allows users to generate a large num-
ber of synthetic jobs by (i) imitating the execution patterns of a
small pre-existing real query workload, (ii) tailoring job instances
to the input data making them representative of each use case, and
(iii) estimating labels for each generated job by actively learning
their performance. We validated the quality of the generated jobs
with an extensive experimental evaluation. The results showed
that DataFarm outperforms the state-of-the-art in both effective-
ness and efficiency. Moreover, we demonstrated that it allows users
to save 54× (and up to an estimated 104×) time compared to the
common approach of executing all queries.
Acknowledgments. This work was funded by the German Min-
istry for Education and Research as BIFOLD – Berlin Institute for
the Foundations of Learning and Data (ref. 01IS18025A and ref.
01IS18037A).

preprin
t

REFERENCES
[1] Divy Agrawal, Mouhamadou Lamine Ba, Laure Berti-Équille, Sanjay Chawla,

Ahmed K. Elmagarmid, Hossam Hammady, Yasser Idris, Zoi Kaoudi, Zuhair
Khayyat, Sebastian Kruse, Mourad Ouzzani, Paolo Papotti, Jorge-Arnulfo Quiané-
Ruiz, Nan Tang, and Mohammed J. Zaki. 2016. Rheem: Enabling Multi-Platform
Task Execution. In SIGMOD. 2069–2072.

[2] Divy Agrawal, Sanjay Chawla, Bertty Contreras-Rojas, Ahmed K. Elmagarmid,
Yasser Idris, Zoi Kaoudi, Sebastian Kruse, Ji Lucas, Essam Mansour, Mourad
Ouzzani, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, Saravanan Thiru-
muruganathan, and Anis Troudi. 2018. RHEEM: Enabling Cross-Platform Data
Processing - May The Big Data Be With You! -. Proc. VLDB Endow. 11, 11 (2018),
1414–1427.

[3] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B Zdonik.
2012. Learning-based Query Performance Modeling and Prediction. In 2012 IEEE
28th International Conference on Data Engineering. IEEE, 390–401.

[4] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Frey-
tag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl,
Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Sebastian
Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. 2014. The Strato-
sphere Platform for Big Data Analytics. The VLDB Journal 23, 6 (Dec. 2014),
939–964. https://doi.org/10.1007/s00778-014-0357-y

[5] Arvind Arasu, Michaela Götz, and Raghav Kaushik. 2010. On Active Learning of
Record Matching Packages. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (Indianapolis, Indiana, USA) (SIGMOD ’10).
Association for Computing Machinery, New York, NY, USA, 783–794. https:
//doi.org/10.1145/1807167.1807252

[6] Gérard Biau, Luc Devroye, and Gábor Lugosi. 2008. Consistency of Random
Forests and Other Averaging Classifiers. J. Mach. Learn. Res. 9 (June 2008),
2015–2033.

[7] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32. https:
//doi.org/10.1023/a:1010933404324

[8] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28–38. http://sites.computer.
org/debull/A15dec/p28.pdf

[9] Tania Cerquitelli, Stefano Proto, Francesco Ventura, Daniele Apiletti, and Elena
Baralis. 2019. Towards a Real-time Unsupervised Estimation of Predictive Model
Degradation. In Proceedings of the International Workshop on Real-Time Business
Intelligence and Analytics, BIRTE 2019, Los Angeles, CA, USA, August 26, 2019.
5:1–5:6. https://doi.org/10.1145/3350489.3350494

[10] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations. In Proceedings of the 2019 International Conference on
Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for
Computing Machinery, New York, NY, USA, 1241–1258. https://doi.org/10.1145/
3299869.3324957

[11] Norman Richard Draper and Harry Smith. 1998. Applied Regression Analysis (3rd
ed ed.). Wiley, New York.

[12] Mark Everingham, S.M. Ali Eslami, Luc VanGool, Christopher K. I.Williams, John
Winn, and Andrew Zisserman. 2015. The Pascal Visual Object Classes Challenge:
A Retrospective. , 98–136 pages. https://doi.org/10.1007/s11263-014-0733-5

[13] Weijie Fu, Meng Wang, Shijie Hao, and Xindong Wu. 2018. Scalable Active
Learning by Approximated Error Reduction. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (Lon-
don, United Kingdom) (KDD ’18). Association for Computing Machinery, New
York, NY, USA, 1396–1405. https://doi.org/10.1145/3219819.3219954

[14] Yifan Fu, Xingquan Zhu, and Bin Li. 2013. A Survey on Instance Selection
for Active Learning. Knowledge and information systems 35, 2 (2013), 249–283.
https://doi.org/10.1007/s10115-012-0507-8

[15] Paul A. Gagniuc. 2017. Markov Chains: from Theory to Implementation and
Experimentation. John Wiley & Sons, Hoboken, NJ.

[16] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A Survey on Concept Drift Adaptation. ACM Comput. Surv.
46, 4, Article 44 (March 2014), 37 pages. https://doi.org/10.1145/2523813

[17] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2008. Database
Systems: The Complete Book (2 ed.). Prentice Hall Press, USA.

[18] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In Proceedings of the 2020 ACM SIGMOD International
Conference onManagement of Data (Portland, OR, USA) (SIGMOD ’20). Association
for Computing Machinery, New York, NY, USA, 1035–1050. https://doi.org/10.
1145/3318464.3389741

[19] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, Not from
Queries! Proc. VLDB Endow. 13, 7 (March 2020), 992–1005. https://doi.org/10.
14778/3384345.3384349

[20] Geoff Hulten, Laurie Spencer, and Pedro Domingos. 2001. Mining Time-Changing
Data Streams. In Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (San Francisco, California) (KDD ’01).
Association for Computing Machinery, New York, NY, USA, 97–106. https:
//doi.org/10.1145/502512.502529

[21] Z. Kaoudi, J. Quiané-Ruiz, B. Contreras-Rojas, R. Pardo-Meza, A. Troudi, and S.
Chawla. 2020. ML-based Cross-Platform Query Optimization. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). 1489–1500.

[22] Mark G Kelly, David J Hand, and Niall M Adams. 1999. The Impact of Changing
Populations on Classifier Performance. In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining. 367–371.

[23] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons
Kemper. 2018. Learned Cardinalities: Estimating Correlated Joins with Deep
Learning. arXiv preprint arXiv:1809.00677 (2018).

[24] Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard Radke,
Viktor Leis, Peter Boncz, Thomas Neumann, and Alfons Kemper. 2019. Esti-
mating Cardinalities with Deep Sketches. In Proceedings of the 2019 Interna-
tional Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD
’19). Association for Computing Machinery, New York, NY, USA, 1937–1940.
https://doi.org/10.1145/3299869.3320218

[25] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and
Ion Stoica. 2018. Learning to Optimize Join Queries With Deep Reinforcement
Learning. CoRR abs/1808.03196 (2018). arXiv:1808.03196

[26] Sebastian Kruse, Zoi Kaoudi, Bertty Contreras-Rojas, Sanjay Chawla, Felix Nau-
mann, and Jorge-Arnulfo Quiané-Ruiz. 2020. RHEEMix in the Data Jungle:
a Cost-based Optimizer for Cross-platform Systems. VLDB JOURNAL (2020).
https://doi.org/10.1007/s00778-020-00612-x

[27] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good are Query Optimizers, Really? Proceedings
of the VLDB Endowment 9, 3 (2015), 204–215.

[28] Charles X. Ling and Jun Du. 2008. Active Learning with Direct Query Con-
struction. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (Las Vegas, Nevada, USA) (KDD ’08).
Association for Computing Machinery, New York, NY, USA, 480–487. https:
//doi.org/10.1145/1401890.1401950

[29] Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. 2020. Active Learning
for ML Enhanced Database Systems. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 175–191. https:
//doi.org/10.1145/3318464.3389768

[30] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (July 2019), 1705–1718. https:
//doi.org/10.14778/3342263.3342644

[31] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning
for Join Order Enumeration. In Proceedings of the First International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management (Houston,
TX, USA) (aiDM’18). Association for Computing Machinery, New York, NY, USA,
Article 3, 4 pages. https://doi.org/10.1145/3211954.3211957

[32] Ryan Marcus and Olga Papaemmanouil. 2019. Flexible Operator Embeddings via
Deep Learning. CoRR abs/1901.09090 (2019). arXiv:1901.09090 http://arxiv.org/
abs/1901.09090

[33] Ryan Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(July 2019), 1733–1746. https://doi.org/10.14778/3342263.3342646

[34] Volker Markl and Guy M. Lohman. 2002. Learning Table Access Cardinalities
with LEO. In Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, Madison, Wisconsin, USA, June 3-6, 2002, Michael J. Franklin,
Bongki Moon, and Anastassia Ailamaki (Eds.). ACM, 613. https://doi.org/10.
1145/564691.564766

[35] Nicolai Meinshausen. 2006. Quantile Regression Forests. Journal of Machine
Learning Research 7, Jun (2006), 983–999.

[36] Raghunath Othayoth Nambiar andMeikel Poess. 2006. The Making of TPC-DS. In
Proceedings of the 32nd International Conference on Very Large Data Bases (Seoul,
Korea) (VLDB ’06). VLDB Endowment, 1049–1058.

[37] Meikel Poess and Chris Floyd. 2000. New TPC Benchmarks for Decision Support
and Web Commerce. SIGMOD Rec. 29, 4 (Dec. 2000), 64–71. https://doi.org/10.
1145/369275.369291

[38] Adrian Daniel Popescu, Andrey Balmin, Vuk Ercegovac, and Anastasia Ailamaki.
2013. PREDIcT: Towards Predicting the Runtime of Large Scale Iterative Analytics.
Proc. VLDB Endow. 6, 14 (Sept. 2013), 1678–1689. https://doi.org/10.14778/2556549.
2556553

[39] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu,
and Christopher Ré. 2017. Snorkel: Rapid Training Data Creation with Weak
Supervision. Proc. VLDB Endow. 11, 3 (Nov. 2017), 269–282. https://doi.org/10.
14778/3157794.3157797

[40] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu,
and Christopher Ré. 2017. Snorkel: Rapid Training Data Creation with Weak

preprin
t

https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1145/1807167.1807252
https://doi.org/10.1145/1807167.1807252
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1145/3350489.3350494
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1145/3219819.3219954
https://doi.org/10.1007/s10115-012-0507-8
https://doi.org/10.1145/2523813
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1145/502512.502529
https://doi.org/10.1145/502512.502529
https://doi.org/10.1145/3299869.3320218
https://arxiv.org/abs/1808.03196
https://doi.org/10.1007/s00778-020-00612-x
https://doi.org/10.1145/1401890.1401950
https://doi.org/10.1145/1401890.1401950
https://doi.org/10.1145/3318464.3389768
https://doi.org/10.1145/3318464.3389768
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.1145/3211954.3211957
https://arxiv.org/abs/1901.09090
http://arxiv.org/abs/1901.09090
http://arxiv.org/abs/1901.09090
https://doi.org/10.14778/3342263.3342646
https://doi.org/10.1145/564691.564766
https://doi.org/10.1145/564691.564766
https://doi.org/10.1145/369275.369291
https://doi.org/10.1145/369275.369291
https://doi.org/10.14778/2556549.2556553
https://doi.org/10.14778/2556549.2556553
https://doi.org/10.14778/3157794.3157797
https://doi.org/10.14778/3157794.3157797

Supervision. Proc. VLDB Endow. 11, 3 (Nov. 2017), 269–282. https://doi.org/10.
14778/3157794.3157797

[41] Lior Rokach and Oded Maimon. 2005. Clustering Methods. Springer US, Boston,
MA, 321–352. https://doi.org/10.1007/0-387-25465-X_15

[42] Justin Salamon and Juan Pablo Bello. 2017. Deep Convolutional Neural Networks
and Data Augmentation for Environmental Sound Classification. IEEE Signal
Processing Letters 24, 3 (2017), 279–283.

[43] Erwan Scornet. 2016. On the asymptotics of random forests. Journal of Multi-
variate Analysis 146 (2016), 72 – 83. https://doi.org/10.1016/j.jmva.2015.06.009
Special Issue on Statistical Models and Methods for High or Infinite Dimensional
Spaces.

[44] Burr Settles. 2009. Active Learning Literature Survey. Technical Report. University
of Wisconsin-Madison Department of Computer Sciences.

[45] Connor Shorten and Taghi M Khoshgoftaar. 2019. A Survey on Image Data
Augmentation for Deep Learning. Journal of Big Data 6, 1 (2019), 60. https:
//doi.org/10.1186/s40537-019-0197-0

[46] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO
- DB2’s LEarning Optimizer. In Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 19–28.

[47] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-Based Cost Estimator.
Proc. VLDB Endow. 13, 3 (Nov. 2019), 307–319. https://doi.org/10.14778/3368289.
3368296

[48] Balder ten Cate, Phokion G. Kolaitis, Kun Qian, and Wang-Chiew Tan. 2018.
Active Learning of GAV Schema Mappings. In Proceedings of the 37th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (Houston,
TX, USA) (SIGMOD/PODS ’18). Association for Computing Machinery, New York,
NY, USA, 355–368. https://doi.org/10.1145/3196959.3196974

[49] Jonas Traub, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, and Volker Markl. 2019.
Agora: Bringing Together Datasets, Algorithms, Models and More in a Unified
Ecosystem [Vision]. Proc. VLDB Endow. 49, 4 (Dec. 2019), SIGMOD Record.

[50] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Juncheng Liu, and Bryan Hooi.
2020. NodeAug: Semi-Supervised Node Classification with Data Augmentation.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Virtual Event, CA, USA) (KDD ’20). Association for
Computing Machinery, New York, NY, USA, 207–217. https://doi.org/10.1145/
3394486.3403063

[51] SvanteWold, KimEsbensen, and Paul Geladi. 1987. Principal Component Analysis.
Chemometrics and intelligent laboratory systems 2, 1-3 (1987), 37–52.

[52] Wentao Wu, Xi Wu, Hakan Hacigümüş, and Jeffrey F. Naughton. 2014. Uncer-
tainty Aware Query Execution Time Prediction. Proc. VLDB Endow. 7, 14 (Oct.
2014), 1857–1868. https://doi.org/10.14778/2733085.2733092

[53] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi
Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019.
Deep Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13, 3 (Nov. 2019),
279–292. https://doi.org/10.14778/3368289.3368294

[54] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: a Unified Engine for Big Data Processing. Commun. ACM 59, 11 (2016),
56–65.

[55] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query Performance
Prediction for Concurrent Queries Using Graph Embedding. Proc. VLDB Endow.
13, 9 (May 2020), 1416–1428. https://doi.org/10.14778/3397230.3397238

[56] Xiangxin Zhu, Carl Vondrick, Charless C Fowlkes, and Deva Ramanan. 2016. Do
we need more Training Data? International Journal of Computer Vision 119, 1
(2016), 76–92.

preprin
t

https://doi.org/10.14778/3157794.3157797
https://doi.org/10.14778/3157794.3157797
https://doi.org/10.1007/0-387-25465-X_15
https://doi.org/10.1016/j.jmva.2015.06.009
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.1145/3196959.3196974
https://doi.org/10.1145/3394486.3403063
https://doi.org/10.1145/3394486.3403063
https://doi.org/10.14778/2733085.2733092
https://doi.org/10.14778/3368289.3368294
https://doi.org/10.14778/3397230.3397238

	Abstract
	1 Introduction
	2 Overview
	3 Generating Abstract Plans: Imitating Real Workload Patterns
	4 Instantiating Abstract Plans: Considering Real Data Distribution
	4.1 Leveraging Input Data Metadata
	4.2 Instantiating Abstract Plans
	4.3 Characterizing Jobs with Metadata

	5 Active Label Forecasting: Labeling Query Workloads
	5.1 Active Learning Strategy
	5.2 Interpretable Operator-Level Features
	5.3 Model Building and Forecasting
	5.4 Job Execution Sampler

	6 Experimental Validation
	6.1 Setup
	6.2 Generated Query Workloads with Labels
	6.3 Quality of Generated Query Workload
	6.4 Effectiveness and Efficiency
	6.5 Comparison with State-of-the-Art
	6.6 In-depth Analysis
	6.7 General applicability

	7 Related Work
	8 Conclusion
	References

