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and deployment of the notebooks

• Jupyter Notebooks enable sharing code and results

[1]

1. https://www.docker.com/

https://www.docker.com/
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• Containerized environments enable execution 
and deployment of the notebooks

• Platforms, such as Google Colab and Kaggle, 
enable effective collaboration among data 
scientists

• Jupyter Notebooks enable sharing code and results

[1]

[2]
1. https://www.docker.com/

[3]

2. https://colab.research.google.com/

3. https://www.kaggle.com/

https://www.docker.com/
https://colab.research.google.com/
https://www.kaggle.com/
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Top 3 notebooks of Home Credit Default Risk Kaggle Competition1  generate  
 100s GBs of intermediate data artifact and are copied 10,000 times

1. https://www.kaggle.com/c/home-credit-default-risk

Lack of data management in existing collaborative environment leads to 
1000s of hours of redundant data processing and model training

Lack of generated data artifacts management

 Re-execution of existing notebooks

https://www.kaggle.com/c/home-credit-default-risk
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  Experiment Graph 
○ Union of all the Workload DAGs 
○ Vertices: data artifacts 
○ Edges: operations

  Materializer 
○ Store data artifacts with high-

likelihood of future reuse
  Optimizer 

○ Linear-time reuse algorithm 

○ Finds optimal execution DAG

 Parser

ML Workload

   Optimizer    Materializer

Executor

    Experiment Graph
C

lient
S

erver

Workload DAG

Optimized DAG

A

Annotated DAG

1
2

5
1

C B

A

B

C



Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Materialization Problem

6

Given a storage budget, materialize a subset of the artifacts in order to minimize 
the execution cost



Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Materialization Problem

6

Given a storage budget, materialize a subset of the artifacts in order to minimize 
the execution cost

Challenges: 

1. Future workloads are unknown 

2. Even if future workloads are known a priori, the problem is NP-Hard (Bhattacherjee, 2015) 

3. Accommodating large graphs and fast number of incoming workloads
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● Many duplicated columns in intermediate data artifacts

○ Feature selection operations
○ Feature generation operations

● Apply column deduplication strategy
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while budget is not exhausted:

    1. run materialization algorithm

    2. deduplicate the materialized artifacts 

    3. update the size of unmaterialized 

artifact

Storage-aware Materialization

Improves Storage utilization and Run-time

Feature  
Selection

Input Artifact Output Artifact
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Given EG and a new workload, find the set of workload artifacts to reuse from 
EG and the set of artifact to compute

Challenges: 

1. Exponential time complexity of exhaustive search 

2. Accommodating large graphs and fast number of incoming workloads, state-of-the-art 
has polynomial time complexity 𝓞(|𝒱|.|𝘌|2)  (Helix, 2018) 
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● Kaggle 
○ Kaggle Home Credit Default Risk1 

Competition 
○ 9 source datasets 
○ 5 real and 3 generated workloads 
○ Total of 130 GB artifact sizes

● Helix 
○ State-of-the-art iterative ML framework 
○ Materialization Algorithm: 

■ Only execution-time is considered 
■ Nodes are not prioritized  

○ Reuse Algorithm 
■ Utilizes Edmonds-Karp Max-Flow 

algorithm, which runs in 𝓞(|𝒱|.|𝘌|2) 

● Naïve 
○ No Optimization

1. https://www.kaggle.com/c/home-credit-default-risk

Workload Baseline

https://www.kaggle.com/c/home-credit-default-risk
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Optimizing ML Workloads improves run-time up to 1 order of magnitude for repeated 
executions and 50% for different workloads

Repeated executions of Kaggle workloads (materialization budget = 16 GB)

Execution of Kaggle workloads in sequence (materialization budget = 16 GB)
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Total run-time of the Kaggle workloads with different materialization strategies and budgets

Exploiting the artifacts characteristics, such as utility and duplication rate, improves the 
materialization process and improves the run-time by 50%
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Overhead of different reuse algorithms for 10,000 synthetically generated workloads

Our linear-time reuse algorithm generates a negligible overhead in real collaborative 
environments where 1000s of workloads are executed
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● Optimization of ML workloads in collaborative 
environment through Materialization and 
Reuse, while incurring negligible overhead 

● Things not covered in the talk: 

○ API and DAG Construction 

○ Quality-based Materialization 

○ Model Warmstarting
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● Openml 
○ Classification Task 312  

○ 2000 scikit-learn pipelines 
○ 1.5 GB of artifact sizes

Workload
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● Edge run-time

● Vertex size
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DAG Annotation
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● Edge run-time

● Vertex size

● Vertex potential 

○ Quality of the best reachable model

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

model_1

cnt_head

5 s 2 s

0.1 s
0.05 s 0.1 s

0.1 s 0.1 s

4 s

4 s

50 MB

40 MB

5 MB

5 MB

10 MB

3 MB

23 MB

0.5 MB

0.05 s

3 s

3 s

2 MB

1.5 MB

Mo
de
l 

Qu
al
it
y

Model Quality

Model 

Quality

Model 
Quality

Accuracy=0.
9

Accuracy=0.9
1

0.0

0.9

0.9

0.91

0.9

0.91

0.91

0.91

0.9

0.91



Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Model Materialization and Warmstarting

21

Run-time of model benchmarking scenario 
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22



Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Reuse Algorithm

23

train

t_subset y

top_feats

train_2 

top_feats_2

merged_feats

model_3

A linear-time algorithm to compute optimal execution plan with a forward and 
backward pass on the workload DAG

Materialized artifact
Un-materialized or do not exist in EG



Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

train

t_subset y

top_feats

train_2 

top_feats_2

merged_feats

model_3

Reuse Algorithm (Forward-pass)

24

1.Traverse from the source

2.Accumulate run-times
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Storage-aware Materialization
● Many duplicated columns in intermediate data artifacts 

● Apply column deduplication strategy

26
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train = pd.read_csv('train.csv') # 

[ad_desc,ts,u_id,price,y] 

ad_desc = train['ad_desc‘]

t_subset = train[['ts','u_id','price‘]]

y = train['y'] 
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Storage-aware Materialization

Improves Storage utilization and Run-time


