
Optimizing Machine Learning Workloads in
Collaborative Environments

Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Ziawasch Abedjan, Tilmann Rabl, and Volker Markl

1

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Introduction

2

Math and
Statistics

Computer
Science

Domain
Knowledge

Data Science and Machine Learning

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Introduction

2

Math and
Statistics

Computer
Science

Domain
Knowledge

Data Science and Machine Learning Data Science and ML Toolkit

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Introduction

2

Math and
Statistics

Computer
Science

Domain
Knowledge

Data Science and Machine Learning Data Science and ML Toolkit

High-quality DS and ML applications require effective collaboration

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Collaborative DS and ML

3

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Collaborative DS and ML

3

• Jupyter Notebooks enable sharing code and results

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Collaborative DS and ML

3

• Containerized environments enable execution
and deployment of the notebooks

• Jupyter Notebooks enable sharing code and results

[1]

1. https://www.docker.com/

https://www.docker.com/

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Collaborative DS and ML

3

• Containerized environments enable execution
and deployment of the notebooks

• Platforms, such as Google Colab and Kaggle,
enable effective collaboration among data
scientists

• Jupyter Notebooks enable sharing code and results

[1]

[2]
1. https://www.docker.com/

[3]

2. https://colab.research.google.com/

3. https://www.kaggle.com/

https://www.docker.com/
https://colab.research.google.com/
https://www.kaggle.com/

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Problems

4

Lack of generated data artifacts management

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Problems

4

Lack of generated data artifacts management

 Re-execution of existing notebooks

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Problems

4

Top 3 notebooks of Home Credit Default Risk Kaggle Competition1 generate
 100s GBs of intermediate data artifact and are copied 10,000 times

1. https://www.kaggle.com/c/home-credit-default-risk

Lack of generated data artifacts management

 Re-execution of existing notebooks

https://www.kaggle.com/c/home-credit-default-risk

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Problems

4

Top 3 notebooks of Home Credit Default Risk Kaggle Competition1 generate
 100s GBs of intermediate data artifact and are copied 10,000 times

1. https://www.kaggle.com/c/home-credit-default-risk

Lack of data management in existing collaborative environment leads to
1000s of hours of redundant data processing and model training

Lack of generated data artifacts management

 Re-execution of existing notebooks

https://www.kaggle.com/c/home-credit-default-risk

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Collaborative ML Workload Optimizer

5

 Parser

ML Workload

 Optimizer Materializer

Executor

 Experiment Graph
C

lient
S

erver

Workload DAG

Optimized DAG

Annotated DAG

1
2

5
1

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Collaborative ML Workload Optimizer

5

 Experiment Graph
○ Union of all the Workload DAGs
○ Vertices: data artifacts
○ Edges: operations

 Materializer
○ Store data artifacts with high-

likelihood of future reuse
 Optimizer

○ Linear-time reuse algorithm

○ Finds optimal execution DAG

 Parser

ML Workload

 Optimizer Materializer

Executor

 Experiment Graph
C

lient
S

erver

Workload DAG

Optimized DAG

A

Annotated DAG

1
2

5
1

C B

A

B

C

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Materialization Problem

6

Given a storage budget, materialize a subset of the artifacts in order to minimize
the execution cost

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Materialization Problem

6

Given a storage budget, materialize a subset of the artifacts in order to minimize
the execution cost

Challenges:

1. Future workloads are unknown

2. Even if future workloads are known a priori, the problem is NP-Hard (Bhattacherjee, 2015)

3. Accommodating large graphs and fast number of incoming workloads

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Materialization Algorithm

7

 run-time
For every artifact compute a utility value: size frequency
 potential

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Materialization Algorithm

7

Materializer Experiment Graph

Materialized artifact
Un-materialized artifact

50,91

40,0.9 5,0.91 5,0.91

10,0.9 3,0.91

23,0.9

2,0.9

1.5,0.91

0.5,0.0

5 2

0.1
0.1 0.1

0.1 0.1

4

4

0.05

3

3

Client Server

 run-time
For every artifact compute a utility value: size frequency
 potential

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Storage-aware Materialization
● Many duplicated columns in intermediate data artifacts

8

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Storage-aware Materialization
● Many duplicated columns in intermediate data artifacts

○ Feature selection operations
○ Feature generation operations

8

Feature
Selection

Input Artifact Output Artifact

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Storage-aware Materialization
● Many duplicated columns in intermediate data artifacts

○ Feature selection operations
○ Feature generation operations

● Apply column deduplication strategy

8

while budget is not exhausted:

 1. run materialization algorithm

 2. deduplicate the materialized artifacts

 3. update the size of unmaterialized

artifact

Storage-aware Materialization

Feature
Selection

Input Artifact Output Artifact

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Storage-aware Materialization
● Many duplicated columns in intermediate data artifacts

○ Feature selection operations
○ Feature generation operations

● Apply column deduplication strategy

8

while budget is not exhausted:

 1. run materialization algorithm

 2. deduplicate the materialized artifacts

 3. update the size of unmaterialized

artifact

Storage-aware Materialization

Improves Storage utilization and Run-time

Feature
Selection

Input Artifact Output Artifact

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Reuse Problem

9

Given EG and a new workload, find the set of workload artifacts to reuse from
EG and the set of artifact to compute

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Reuse Problem

9

Given EG and a new workload, find the set of workload artifacts to reuse from
EG and the set of artifact to compute

Challenges:

1. Exponential time complexity of exhaustive search

2. Accommodating large graphs and fast number of incoming workloads, state-of-the-art
has polynomial time complexity 𝓞(|𝒱|.|𝘌|2) (Helix, 2018)

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Reuse Algorithm

10

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

A linear-time algorithm to compute optimal execution plan with a forward and
backward pass on the workload DAG

Materialized artifact
Un-materialized or do not exist in EG

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Reuse Algorithm

10

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

A linear-time algorithm to compute optimal execution plan with a forward and
backward pass on the workload DAG

Materialized artifact
Un-materialized or do not exist in EG

Forw
ard P

ass

• Accumulate run-times

• For every vertex

• Load or compute

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Reuse Algorithm

10

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

A linear-time algorithm to compute optimal execution plan with a forward and
backward pass on the workload DAG

Materialized artifact
Un-materialized or do not exist in EG

Forw
ard P

ass

• Accumulate run-times

• For every vertex

• Load or compute

B
ac

kw
ar

d
P

as
s

• Prune unnecessary
loaded vertices

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Reuse Algorithm

10

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

A linear-time algorithm to compute optimal execution plan with a forward and
backward pass on the workload DAG

Materialized artifact
Un-materialized or do not exist in EG

Forw
ard P

ass

• Accumulate run-times

• For every vertex

• Load or compute

B
ac

kw
ar

d
P

as
s

• Prune unnecessary
loaded vertices

Prune

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Evaluation

11

● Kaggle
○ Kaggle Home Credit Default Risk1

Competition
○ 9 source datasets
○ 5 real and 3 generated workloads
○ Total of 130 GB artifact sizes

● Helix
○ State-of-the-art iterative ML framework
○ Materialization Algorithm:

■ Only execution-time is considered
■ Nodes are not prioritized

○ Reuse Algorithm
■ Utilizes Edmonds-Karp Max-Flow

algorithm, which runs in 𝓞(|𝒱|.|𝘌|2)

● Naïve
○ No Optimization

1. https://www.kaggle.com/c/home-credit-default-risk

Workload Baseline

https://www.kaggle.com/c/home-credit-default-risk

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

End-to-end Run-time

12

Repeated executions of Kaggle workloads (materialization budget = 16 GB)

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

End-to-end Run-time

12

Repeated executions of Kaggle workloads (materialization budget = 16 GB)

Execution of Kaggle workloads in sequence (materialization budget = 16 GB)

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

End-to-end Run-time

12

Optimizing ML Workloads improves run-time up to 1 order of magnitude for repeated
executions and 50% for different workloads

Repeated executions of Kaggle workloads (materialization budget = 16 GB)

Execution of Kaggle workloads in sequence (materialization budget = 16 GB)

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Materialization Impact

13

Total run-time of the Kaggle workloads with different materialization strategies and budgets

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Materialization Impact

13

Total run-time of the Kaggle workloads with different materialization strategies and budgets

Exploiting the artifacts characteristics, such as utility and duplication rate, improves the
materialization process and improves the run-time by 50%

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Reuse Overhead

14

Overhead of different reuse algorithms for 10,000 synthetically generated workloads
100 101 102 103 104

Number of Workloads

0

1k

2k

3k

C
um

ul
at

iv
e

O
ve

rh
ea

d
(s

)

Colab-reuse Helix

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Reuse Overhead

14

Overhead of different reuse algorithms for 10,000 synthetically generated workloads

Our linear-time reuse algorithm generates a negligible overhead in real collaborative
environments where 1000s of workloads are executed

100 101 102 103 104

Number of Workloads

0

1k

2k

3k

C
um

ul
at

iv
e

O
ve

rh
ea

d
(s

)

Colab-reuse Helix

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Summary

15

Parser

ML Workload

Optimizer Materializer

Executor

Experiment Graph

C
lient

S
erver

Workload DAG

Optimized DAG

Annotated DAG

1
2

5
1

● Optimization of ML workloads in collaborative
environment through Materialization and
Reuse, while incurring negligible overhead

● Things not covered in the talk:

○ API and DAG Construction

○ Quality-based Materialization

○ Model Warmstarting

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

References
● Bhattacherjee, Souvik, et al. "Principles of dataset versioning: Exploring the recreation/storage tradeoff." Proceedings of the VLDB

Endowment. International Conference on Very Large Data Bases. Vol. 8. No. 12. NIH Public Access, 2015.

● Xin, Doris, et al. "Helix: Holistic optimization for accelerating iterative machine learning." Proceedings of the VLDB Endowment 12.4

(2018): 446-460.

● Jack Edmonds and Richard M. Karp. 1972. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. ACM 19, 2

(April 1972), 248–264. https://doi.org/10.1145/321694.321699

● Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier, et al. 2016. Jupyter Notebooks – a

publishing format for reproducible computational workflows. In Posi- tioning and Power in Academic Publishing: Players, Agents and

Agendas, F. Loizides and B. Schmidt (Eds.). IOS Press, 87 – 90.

● Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2016). Borg, omega, and kubernetes. Queue, 14(1), 70-93.

16

https://doi.org/10.1145/321694.321699

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Evaluation (2)

17

● Openml
○ Classification Task 312

○ 2000 scikit-learn pipelines
○ 1.5 GB of artifact sizes

Workload

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Construction

train = pd.read_csv('train.csv') # [ad_desc,ts,u_id,price,y]

ad_desc = train['ad_desc']

vectorizer = CountVectorizer()

count_vectorized = vectorizer.fit_transform(ad_desc)

print count_vectorized.head()

selector = SelectKBest(k=2)

t_subset = train[['ts','u_id','price']]

y = train['y']

top_features = selector.fit_transform(t_subset, y)

model_1 = svm.SVC().fit(top_features, y)

print model_1 # terminal vertex

X = pd.concat([count_vectorized,top_features], axis = 1)

model_2 = svm.SVC().fit(X, y)

print model_2 # terminal vertex

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

18

model_1

cnt_head

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Construction

train = pd.read_csv('train.csv') # [ad_desc,ts,u_id,price,y]

ad_desc = train['ad_desc']

vectorizer = CountVectorizer()

count_vectorized = vectorizer.fit_transform(ad_desc)

print count_vectorized.head()

selector = SelectKBest(k=2)

t_subset = train[['ts','u_id','price']]

y = train['y']

top_features = selector.fit_transform(t_subset, y)

model_1 = svm.SVC().fit(top_features, y)

print model_1 # terminal vertex

X = pd.concat([count_vectorized,top_features], axis = 1)

model_2 = svm.SVC().fit(X, y)

print model_2 # terminal vertex

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

Artifact

Operation

18

model_1

cnt_head

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Construction

train = pd.read_csv('train.csv') # [ad_desc,ts,u_id,price,y]

ad_desc = train['ad_desc']

vectorizer = CountVectorizer()

count_vectorized = vectorizer.fit_transform(ad_desc)

print count_vectorized.head()

selector = SelectKBest(k=2)

t_subset = train[['ts','u_id','price']]

y = train['y']

top_features = selector.fit_transform(t_subset, y)

model_1 = svm.SVC().fit(top_features, y)

print model_1 # terminal vertex

X = pd.concat([count_vectorized,top_features], axis = 1)

model_2 = svm.SVC().fit(X, y)

print model_2 # terminal vertex

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

Artifact

Operation

18

model_1

cnt_head
40 MB

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Construction

train = pd.read_csv('train.csv') # [ad_desc,ts,u_id,price,y]

ad_desc = train['ad_desc']

vectorizer = CountVectorizer()

count_vectorized = vectorizer.fit_transform(ad_desc)

print count_vectorized.head()

selector = SelectKBest(k=2)

t_subset = train[['ts','u_id','price']]

y = train['y']

top_features = selector.fit_transform(t_subset, y)

model_1 = svm.SVC().fit(top_features, y)

print model_1 # terminal vertex

X = pd.concat([count_vectorized,top_features], axis = 1)

model_2 = svm.SVC().fit(X, y)

print model_2 # terminal vertex

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

Artifact

Operation

18

model_1

cnt_head

5 s

40 MB

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Construction

train = pd.read_csv('train.csv') # [ad_desc,ts,u_id,price,y]

ad_desc = train['ad_desc']

vectorizer = CountVectorizer()

count_vectorized = vectorizer.fit_transform(ad_desc)

print count_vectorized.head()

selector = SelectKBest(k=2)

t_subset = train[['ts','u_id','price']]

y = train['y']

top_features = selector.fit_transform(t_subset, y)

model_1 = svm.SVC().fit(top_features, y)

print model_1 # terminal vertex

X = pd.concat([count_vectorized,top_features], axis = 1)

model_2 = svm.SVC().fit(X, y)

print model_2 # terminal vertex

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

Artifact

Operation

18

model_1

cnt_head

5 s

Accuracy
=0.91

40 MB

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Construction

train = pd.read_csv('train.csv') # [ad_desc,ts,u_id,price,y]

ad_desc = train['ad_desc']

vectorizer = CountVectorizer()

count_vectorized = vectorizer.fit_transform(ad_desc)

print count_vectorized.head()

selector = SelectKBest(k=2)

t_subset = train[['ts','u_id','price']]

y = train['y']

top_features = selector.fit_transform(t_subset, y)

model_1 = svm.SVC().fit(top_features, y)

print model_1 # terminal vertex

X = pd.concat([count_vectorized,top_features], axis = 1)

model_2 = svm.SVC().fit(X, y)

print model_2 # terminal vertex

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

19

model_1

cnt_head
40 MB

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Construction

train = pd.read_csv('train.csv') # [ad_desc,ts,u_id,price,y]

ad_desc = train['ad_desc']

vectorizer = CountVectorizer()

count_vectorized = vectorizer.fit_transform(ad_desc)

print count_vectorized.head()

selector = SelectKBest(k=2)

t_subset = train[['ts','u_id','price']]

y = train['y']

top_features = selector.fit_transform(t_subset, y)

model_1 = svm.SVC().fit(top_features, y)

print model_1 # terminal vertex

X = pd.concat([count_vectorized,top_features], axis = 1)

model_2 = svm.SVC().fit(X, y)

print model_2 # terminal vertex

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

Source vertex

19

model_1

cnt_head
40 MB

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Construction

train = pd.read_csv('train.csv') # [ad_desc,ts,u_id,price,y]

ad_desc = train['ad_desc']

vectorizer = CountVectorizer()

count_vectorized = vectorizer.fit_transform(ad_desc)

print count_vectorized.head()

selector = SelectKBest(k=2)

t_subset = train[['ts','u_id','price']]

y = train['y']

top_features = selector.fit_transform(t_subset, y)

model_1 = svm.SVC().fit(top_features, y)

print model_1 # terminal vertex

X = pd.concat([count_vectorized,top_features], axis = 1)

model_2 = svm.SVC().fit(X, y)

print model_2 # terminal vertex

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

Source vertex

Terminal
vertex

19

model_1

cnt_head

Terminal
vertex

40 MB

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Construction

train = pd.read_csv('train.csv') # [ad_desc,ts,u_id,price,y]

ad_desc = train['ad_desc']

vectorizer = CountVectorizer()

count_vectorized = vectorizer.fit_transform(ad_desc)

print count_vectorized.head()

selector = SelectKBest(k=2)

t_subset = train[['ts','u_id','price']]

y = train['y']

top_features = selector.fit_transform(t_subset, y)

model_1 = svm.SVC().fit(top_features, y)

print model_1 # terminal vertex

X = pd.concat([count_vectorized,top_features], axis = 1)

model_2 = svm.SVC().fit(X, y)

print model_2 # terminal vertex

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

Source vertex

Operation

Terminal
vertex

19

model_1

cnt_head

Terminal
vertex

40 MB

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Annotation

20

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

model_1

cnt_head

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Annotation

20

● Edge run-time
train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

model_1

cnt_head

5 s 2 s

0.1 s
0.05 s 0.1 s

0.1 s 0.1 s

4 s

4 s

0.05 s

3 s

3 s

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Annotation

20

● Edge run-time

● Vertex size

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

model_1

cnt_head

5 s 2 s

0.1 s
0.05 s 0.1 s

0.1 s 0.1 s

4 s

4 s

50 MB

40 MB

5 MB

5 MB

10 MB

3 MB

23 MB

0.5 MB

0.05 s

3 s

3 s

2 MB

1.5 MB

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

DAG Annotation

20

● Edge run-time

● Vertex size

● Vertex potential

○ Quality of the best reachable model

train

ad_desc t_subset y

cnt_vect top_feats

X

model_2

model_1

cnt_head

5 s 2 s

0.1 s
0.05 s 0.1 s

0.1 s 0.1 s

4 s

4 s

50 MB

40 MB

5 MB

5 MB

10 MB

3 MB

23 MB

0.5 MB

0.05 s

3 s

3 s

2 MB

1.5 MB

Mo
de
l

Qu
al
it
y

Model Quality

Model

Quality

Model
Quality

Accuracy=0.
9

Accuracy=0.9
1

0.0

0.9

0.9

0.91

0.9

0.91

0.91

0.91

0.9

0.91

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Model Materialization and Warmstarting

21

Run-time of model benchmarking scenario

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Impact of Model Warmstarting on Accuracy

22

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Reuse Algorithm

23

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

A linear-time algorithm to compute optimal execution plan with a forward and
backward pass on the workload DAG

Materialized artifact
Un-materialized or do not exist in EG

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

Reuse Algorithm (Forward-pass)

24

1.Traverse from the source

2.Accumulate run-times

3.For every materialized node
compare the accumulated run-
time with the load-time

Forward-pass

Artifacts to execute

Artifacts to load

Materialized artifact
Un-materialized or do not exist in EG

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

Acc = 0.1

Acc = 0.05

Acc = 2.1

train_2

top_feats_2

merged_feats

model_3

Reuse Algorithm (Forward-pass)

24

1.Traverse from the source

2.Accumulate run-times

3.For every materialized node
compare the accumulated run-
time with the load-time

Forward-pass

Artifacts to execute

Artifacts to load

train

Materialized artifact
Un-materialized or do not exist in EG

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

Acc = 0.1

Acc = 0.05

Acc = 2.1

load cost = 0.06

Load > Acc
train_2

top_feats_2

merged_feats

model_3

Reuse Algorithm (Forward-pass)

24

1.Traverse from the source

2.Accumulate run-times

3.For every materialized node
compare the accumulated run-
time with the load-time

Forward-pass

Artifacts to execute

Artifacts to load

train

Materialized artifact
Un-materialized or do not exist in EG

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

Acc = 0.1

Acc = 0.05

Acc = 2.1

load cost = 0.06

Load > Acc
train_2

top_feats_2

merged_feats

model_3

Reuse Algorithm (Forward-pass)

24

1.Traverse from the source

2.Accumulate run-times

3.For every materialized node
compare the accumulated run-
time with the load-time

Forward-pass

Artifacts to execute

Artifacts to load

train

t_subset

Materialized artifact
Un-materialized or do not exist in EG

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

Acc = 0.1

Acc = 0.05

Acc = 2.1

load cost = 0.06

Load < Acc
load = 1.5

Load < Acc
train_2

top_feats_2

merged_feats

model_3

Reuse Algorithm (Forward-pass)

24

1.Traverse from the source

2.Accumulate run-times

3.For every materialized node
compare the accumulated run-
time with the load-time

Forward-pass

Artifacts to execute

Artifacts to load

train

t_subset

Materialized artifact
Un-materialized or do not exist in EG

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

Acc = 0.1

Acc = 0.05

Acc = 2.1

load cost = 0.06

Load < Acc
load = 1.5

Load < Acc
train_2

top_feats_2

merged_feats

model_3

Reuse Algorithm (Forward-pass)

24

1.Traverse from the source

2.Accumulate run-times

3.For every materialized node
compare the accumulated run-
time with the load-time

Forward-pass

Artifacts to execute

Artifacts to load

train

t_subset y

top_feats

Materialized artifact
Un-materialized or do not exist in EG

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

train_2

top_feats_2

merged_feats

model_3

Reuse Algorithm (Forward-pass)

24

1.Traverse from the source

2.Accumulate run-times

3.For every materialized node
compare the accumulated run-
time with the load-time

Forward-pass

Artifacts to execute

Artifacts to load

train

t_subset y

top_feats

Materialized artifact
Un-materialized or do not exist in EG

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

train_2

top_feats_2

merged_feats

model_3

Reuse Algorithm (Backward-pass)

25

1.Traverse backward from the
terminal

2.For every loaded artifact,
stop the traversal of its
parents

3.Prune artifacts that are not
visited

Backward-pass

y

top_feats

train

t_subset

Artifacts to execute

Artifacts to load

Artifacts to prune

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

train_2

top_feats_2

merged_feats

model_3

Reuse Algorithm (Backward-pass)

25

1.Traverse backward from the
terminal

2.For every loaded artifact,
stop the traversal of its
parents

3.Prune artifacts that are not
visited

Backward-pass

y

top_feats

Stop Traversal
X

X

X

train

t_subset

Artifacts to execute

Artifacts to load

Artifacts to prune

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

train_2

top_feats_2

merged_feats

model_3

Reuse Algorithm (Backward-pass)

25

1.Traverse backward from the
terminal

2.For every loaded artifact,
stop the traversal of its
parents

3.Prune artifacts that are not
visited

Backward-pass

y

top_feats

Stop Traversal
X

X

X

Artifacts to execute

Artifacts to load

Artifacts to prune

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

train

t_subset y

top_feats

train_2

top_feats_2

merged_feats

model_3

train_2

top_feats_2

merged_feats

model_3

Reuse Algorithm (Backward-pass)

25

1.Traverse backward from the
terminal

2.For every loaded artifact,
stop the traversal of its
parents

3.Prune artifacts that are not
visited

Backward-pass

y

top_feats

Artifacts to execute

Artifacts to load

Artifacts to prune

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Storage-aware Materialization
● Many duplicated columns in intermediate data artifacts

● Apply column deduplication strategy

26

train

ad_desc t_subset y

train = pd.read_csv('train.csv') #

[ad_desc,ts,u_id,price,y]

ad_desc = train['ad_desc‘]

t_subset = train[['ts','u_id','price‘]]

y = train['y']

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Storage-aware Materialization
● Many duplicated columns in intermediate data artifacts

● Apply column deduplication strategy

26

train

ad_desc t_subset y

train = pd.read_csv('train.csv') #

[ad_desc,ts,u_id,price,y]

ad_desc = train['ad_desc‘]

t_subset = train[['ts','u_id','price‘]]

y = train['y']

while budget is not exhausted:

 1. run materialization algorithm

 2. deduplicate the materialized artifacts

 3. update the size of unmaterialized

artifact

Storage-aware Materialization

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments

Storage-aware Materialization
● Many duplicated columns in intermediate data artifacts

● Apply column deduplication strategy

26

train

ad_desc t_subset y

train = pd.read_csv('train.csv') #

[ad_desc,ts,u_id,price,y]

ad_desc = train['ad_desc‘]

t_subset = train[['ts','u_id','price‘]]

y = train['y']

while budget is not exhausted:

 1. run materialization algorithm

 2. deduplicate the materialized artifacts

 3. update the size of unmaterialized

artifact

Storage-aware Materialization

Improves Storage utilization and Run-time

