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High-quality DS and ML applications require effective collaboration
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Collaborative DS and ML
o=

« Jupyter Notebooks enable sharing code and results Jupyter

o~

 Containerized environments enable execution
and deployment of the notebooks

1. https://www.docker.com/
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Collaborative DS and ML
o=

« Jupyter Notebooks enable sharing code and results Jupyter

o~

 Containerized environments enable execution
and deployment of the notebooks

[1]

« Platforms, such as Google Colab and Kaggle,

enable effective collaboration among data ka Ie
scientists g g

[2] [3]
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Problems

Lack of generated data artifacts management
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Problems

Lack of generated data artifacts management
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Re-execution of existing notebooks
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Problems

. Public Sortby  Hotness v
Lack of generated data artifacts management
Outputs v Languages ¥ Tags v Search notebooks Q
_ @ : i
2535 [l & StortHers:ACentie ntroduction /e

i @ Home Credit : Complete EDA + Feature Importance v v

I
/27 2y ago % tutorial, beginner, eda, data visualization, binary classification

o~o~0m0.
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Re-execution of existing notebooks

Top 3 notebooks of Home Credit Default Risk Kaggle Competition' generate
100s GBs of intermediate data artifact and are copied 10,000 times

1. https://www.kaggle.com/c/home-credit-default-risk
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Problems

Public or Hotness

Lack of generated data artifacts management

Outputs v Languages ¥ Tags v Search notebooks Q

@ Start Here: A Gentle Introduction m
2y ago @ 0.754 % tutorial, beginner, eda, classification -
eooe
@ Home Credit : Complete EDA + Feature Importance v v
ot ag 9 tutorial, beginner, eda, data visualization, binary classification
sooe

g @ Introduction to Manual Feature Engineering

Re-execution of existing notebooks 24 W 2 so0 w0 % oo, s v

Top 3 notebooks of Home Credit Default Risk Kaggle Competition' generate
100s GBs of intermediate data artifact and are copied 10,000 times

Lack of data management in existing collaborative environment leads to
1000s of hours of redundant data processing and model training

1. https://www.kaggle.com/c/home-credit-default-risk
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Collaborative ML Workload Optimizer
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Materialization Problem

Given a storage budget, materialize a subset of the artifacts in order to minimize
the execution cost
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Materialization Problem

Given a storage budget, materialize a subset of the artifacts in order to minimize
the execution cost

Challenges:
1. Future workloads are unknown

2. Even if future workloads are known a priori, the problem is NP-Hard (Bhattacherjee, 2015)

3. Accommodating large graphs and fast number of incoming workloads
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Materialization Algorithm

For every artifact compute a utility value: lsize t
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Materialization Algorithm

For every artifact compute a utility value: lsize t
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Storage-aware Materialization

e Many duplicated columns in intermediate data artifacts
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Storage-aware Materialization

e Many duplicated columns in intermediate data artifacts

o Feature generation operations IIII

o Feature selection operations
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Input Artifact

Optimizing Machine Learning Workloads in Collaborative Environments
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Storage-aware Materialization

i ini i i Input Artif tput Artifact
e Many duplicated columns in intermediate data artifacts oo 12> Output Artifac
o Feature selection operations

Feature
Selection
e Apply column deduplication strategy IIII

o Feature generation operations

while budget is not exhausted:
1. run materialization algorithm
2. deduplicate the materialized artifacts

3. update the size of unmaterialized

artifact
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Storage-aware Materialization

i ini i i Input Artif tput Artifact
e Many duplicated columns in intermediate data artifacts oo 12> Output Artifac
o Feature selection operations

Feature
Selection
e Apply column deduplication strategy IIII

o Feature generation operations

while budget is not exhausted:
1. run materialization algorithm
2. deduplicate the materialized artifacts

3. update the size of unmaterialized

Impr(l)vﬁes‘ Storage utilization and Run-time
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Reuse Problem

Given EG and a new workload, find the set of workload artifacts to reuse from
EG and the set of artifact to compute

B I carcn conter
Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments ' . llfg;;\rﬁggi;e' ngvh"";;gf.
in



Reuse Problem

Given EG and a new workload, find the set of workload artifacts to reuse from
EG and the set of artifact to compute

Challenges:
1. Exponential time complexity of exhaustive search

2. Accommodating large graphs and fast number of incoming workloads, state-of-the-art
has polynomial time complexity O(|7|.|E]?) (Helix, 2018)
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Reuse Algorithm

A linear-time algorithm to compute optimal execution plan with a forward and
backward pass on the workload DAG

t subset

op feats

erged feats
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Reuse Algorithm

A linear-time algorithm to compute optimal execution plan with a forward and
backward pass on the workload DAG

e Accumulate run-times

t subset

op feats

erged feats
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Reuse Algorithm

A linear-time algorithm to compute optimal execution plan with a forward and

backward pass on the workload DAG

e Accumulate run-times

t subset

op feats

erged feats
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Reuse Algorithm

A linear-time algorithm to compute optimal execution plan with a forward and

backward pass on the workload DAG

op feats

erged feats
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« For every vertex

« Load or compute
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Evaluation

e Kaggle e Helix
o Kaggle Home Credit Default Risk! o State-of-the-art iterative ML framework
Competition o Materialization Algorithm:
o 9 source datasets m  Only execution-time is considered
o b5real and 3 generated workloads m Nodes are not prioritized
o Total of 130 GB artifact sizes o Reuse Algorithm

m Utilizes Edmonds-Karp Max-Flow
algorithm, which runs in O (|7|.|E|?)

e Naive
o No Optimization

1. https://www.kaggle.com/c/home-credit-default-risk
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End-to-end Run-time
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Repeated executions of Kaggle workloads (materialization budget = 16 GB)
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End-to-end Run-time
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Repeated executions of Kaggle workloads (materialization budget = 16 GB)
=@ Collaborative =3= Helix =e=Naive

»n 2k

=3 15k | === :%
E E ‘ S —'—"*‘ ‘
== 1k ——C " e— ® @
S 2 500 gt T | | |
O § 0 e T \ \ \ \ \

1 2 3 4 5 6 7 8

Workload

Execution of Kaggle workloads in sequence (materialization budget = 16 GB)
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End-to-end Run-time

BEA Collaborative EEBAI Helix B8 Naive
400
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Run 1 Run 2 0 Run 1 Run 2 0 Run 1 Run 2
(a) Workload 1 (b) Workload 2 (c) Workload 3
Repeated executions of Kaggle workloads (materialization budget = 16 GB)
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Workload

Execution of Kaggle workloads in sequence (materialization budget = 16 GB)

Optimizing ML Workloads improves run-time up to 1 order of magnitude for repeated
executions and 50% for different workloads
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Materialization Impact
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Total run-time of the Kaggle workloads with different materialization strategies and budgets
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Materialization Impact

B Storage-aware G064 Helix
B Collab-mat === All-materializer

2k

Run Time (s)

Budget (GB)
Total run-time of the Kaggle workloads with different materialization strategies and budgets

Exploiting the artifacts characteristics, such as utility and duplication rate, improves the
materialization process and improves the run-time by 50%
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Reuse Overhead
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Reuse Overhead
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Our linear-time reuse algorithm generates a negligible overhead in real collaborative
environments where 1000s of workloads are executed
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Summary

ML Workload . e Optimization of ML workloads in collaborative
= % ) Jupyter ) environment through Materialization and
‘ Reuse, while incurring negligible overhead
Parser
( * ) ( )
- [ Executor | .\"}/.
2 T °?, e Things not covered in the talk:
»L ( ] o APl and DAG Construction
Optimizer > Materializer
[ P .\‘é‘/ o Quality-based Materialization

_ o Model Warmstarting
Experiment Graph
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Evaluation (2)

e Openml
o Classification Task 312
o 2000 scikit-learn pipelines
o 1.5 GB of artifact sizes
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DAG Construction

train = pd.read csv('train.csv') # [ad desc,ts,u id,price,y] train
ad_desc = train['ad desc'] ///////// \\\\\\\\\\
vectorizer = CountVectorizer() \

d des subse

count_vectorized = vectorizer.fit transform(ad_desc)

print count vectorized.head()

selector SelectKBest (k=2)

t subset

train[['ts','u id', 'price']]
y = train['y'] cnt vect op feat
top features = selector.fit transform(t subset, y) R
model 1 = svm.SVC().fit(top features, y)
print model 1 # terminal vertex ;
X = pd.concat([count vectorized,top features], axis = 1) @
model 2 = svm.SVC().fit(X, y)
print model 2 # terminal vertex

y
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DAG Construction

train = pd.read csv('train.csv') # [ad desc,ts,u id,price,y] train ‘//////1
ad_desc = train['ad desc'] ///////// \\\\\\\\\\
vectorizer = CountVectorizer() \

d des subse

count_vectorized = vectorizer.fit transform(ad_desc)

print count vectorized.head()

Operation

selector SelectKBest (k=2)

t subset

train[['ts','u id', 'price']]
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DAG Construction
train = pd.read csv('train.csv') # [ad desc,ts,u id,price,y] <E;EE€EE£)

ad desc = train['ad desc']

vectorizer = CountVectorizer() \
count vectorized = vectorizer.fit transform(ad_desc) d_des subse

Artifact

print count vectorized.head() Operation
selector = SelectKBest(k=2)
t subset = train[['ts','u id', 'price']]

y = train['y']

top features = selector.fit transform(t subset, y)
model 1 = svm.SVC().fit(top features, y)

print model 1 # terminal vertex

X = pd.concat([count vectorized,top features], axis = 1)

model 2 = svm.SVC().fit(X, y)

print model 2 # terminal vertex @
\
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DAG Construction

train = pd.read csv('train.csv') # [ad desc,ts,u id,price,y] train
ad desc = train['ad desc'] /////////

vectorizer = CountVectorizer()

Artifact

count_vectorized = vectorizer.fit transform(ad_desc)

print count vectorized.head() Operation
selector = SelectKBest(k=2)
t subset = train[['ts','u id', 'price']]

y = train['y']

top features = selector.fit transform(t subset, y)
model 1 = svm.SVC().fit(top features, y)

print model 1 # terminal vertex

X = pd.concat([count vectorized,top features], axis = 1)
model 2 svm.SVC().fit (X, y)

print model 2 # terminal vertex @
\
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DAG Construction

Artifact

train = pd.read csv('train.csv') # [ad desc,ts,u id,price,y]

ad desc = train['ad desc']

vectorizer = CountVectorizer()

count_vectorized = vectorizer.fit transform(ad_desc)

print count vectorized.head() Operation
selector = SelectKBest(k=2)
t subset = train[['ts','u id', 'price']]

y = train['y']

top features = selector.fit transform(t subset, y)
model 1 = svm.SVC().fit(top features, y)

print model 1 # terminal vertex

X = pd.concat([count vectorized,top features], axis = 1)
model 2 = svm.SVC().fit(X, y)

print model 2 # terminal vertex
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DAG Construction

train = pd.read csv('train.csv') # [ad desc,ts,u id,price,y] train
ad_desc = train['ad desc'] ///////// \\\\\\\\\\
vectorizer = CountVectorizer() \

d des subse

count_vectorized = vectorizer.fit transform(ad_desc)

print count vectorized.head()

selector SelectKBest (k=2)

t subset

train[['ts','u id', 'price']]
y = train['y'] cnt vect op feat
top features = selector.fit transform(t subset, y) R
model 1 = svm.SVC().fit(top features, y)
print model 1 # terminal vertex / 40 MB
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DAG Construction
Source vertex

train = pd.read csv('train.csv') # [ad desc,ts,u id,price,y] train

ad desc = train['ad desc'] /////////

vectorizer = CountVectorizer() 4 d b
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count_vectorized = vectorizer.fit transform(ad_desc)

print count vectorized.head()
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DAG Construction
Source vertex

train = pd.read csv('train.csv') # [ad desc,ts,u id,price,y] train

ad desc = train['ad desc'] /////////

vectorizer = CountVectorizer() 4 d b
es supbse

count_vectorized = vectorizer.fit transform(ad_desc)
print count vectorized.head()

selector = SelectKBest (k=2)

t subset = train[['ts','u id', 'price']]

y = train['y'] cnt vect op feat

top features = selector.fit transform(t subset, y) <

model 1 = svm.SVC().fit(top features, y)
print model 1 # terminal vertex 40 MB

X = pd.concat([count vectorized,top features], axis = 1) @ @\ \
model 2 = svm.SVC().fit(X, y) A 'Fern1h1al

int del 2 # t i 1 t
print model erminal vertex \ . @ -— Vertex
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DAG Construction
Source vertex

train = pd.read csv('train.csv') # [ad desc,ts,u id,price,y] train

ad desc = train['ad desc'] /////////

vectorizer = CountVectorizer()

count vectorized = vectorizer.fit transform(ad_desc) d_des @bse

print count vectorized.head() Operation
\

selector SelectKBest (k=2)

t subset

train[['ts','u id', 'price']]
y = train['y'] cnt vect op feat
top features = selector.fit transform(t subset, y) <
model 1 = svm.SVC().fit(top features, y)
print model 1 # terminal vertex 40 MB
X = pd.concat([count vectorized,top features], axis = 1) @ @\ \
model 2 = svm.SVC().fit(X, y) A Terminal

int del 2 # t i 1 t
print model erminal vertex \ . @ -— Vertex
Terminal

vertex
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DAG Annotation

cnt_vect %@
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DAG Annotation
e Edge run-time @
2s

S
0.05 s N
5 s 2 s
3 s
cnt vect op feat 3 s
/ 4

;
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DAG Annotation

e Edge run-time @
. 0.1 s
e \ertex size 0 0 =2 \

cnt _vect op feat

S

@\4\ o
23 MB

2MB
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DAG Annotation

. 0,
e Edge run-time @
0.1 s

40 MB 0.05 s

e \ertex size 0.9 )
5

e Vertex potential 5 1B
® 25 3
o Quality of the best reachable model 0.91
10 M
0.9 (cnt_vect op feat

0.1 '
|4 4
0.5 MB
0.0 i
S
23 MB «¢ . &
. M,
0.9 Qusfietly @ Accureglcy=0 .

2 MB
0.9
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Model Materialization and Warmstarting

-------- Collaborative === Naive
‘—
/\2.51{ ”/
= 2k SL
= Nl
= 1.5k "
=C -~
Sz K 1= e
500 ”‘/ ------------------- o awsessssanamesnaEEnt
0 '.’..:. --------- :----1 -------------
0 500 1000 1500 2000
OpenML Workload

Run-time of model benchmarking scenario

Berlin

German
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Impact of Model Warmstarting on Accuracy

A = acc(CO+W) - acc(OML)

W
)

=N
o O

Cumulative
A Accuracy

-

O 500 1000 1500 2000
OpenML Workload
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Reuse Algorithm

A linear-time algorithm to compute optimal execution plan with a forward and
backward pass on the workload DAG

t subset

op feats

erged feats

‘.IIIIIIIII"

P < cccarch Contor
Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments ' . llfg;;\rﬁ;igi;e' ngvh"";;gf'
in

O Materialized artifact
O Un-materialized or do not exist in EG



Reuse Algorithm (Forward-pass)

1. Traverse from the source
traln 2

2.Accumulate run-times

t subset

3.For every materialized node op_feats
compare the accumulated run-
time with the load-time op feat

erged feats

O Materialized artifact
O Un-materialized or do not exist in EG

O Artifacts to execute
. Artifacts to load

-r g:;’::r’(]:h Center
Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments ' 1 klfm.f“ﬁcia' Tefh"‘%f'ze'

Intelligence Universitat
Berlin




Reuse Algorithm (Forward-pass)

l.Traverse from the source .
train 2

. | Acc
2.Accumulate run-times

3.For every materialized node op_feats Acc =
compare the accumulated run-
time with the load-time Op feat

erged feats
() Materialized artifact
i - a
O Un-materialized or do not exist in EG

Artifacts to execute ; v
O mode1 3 D
. Artifacts to load —
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Reuse Algorithm (Forward-pass)

load cost = 0.06

[EPad > Acc

l.Traverse from the source .
train 2

. | Acc
2.Accumulate run-times

3.For every materialized node op_feats Acc
compare the accumulated run-
time with the load-time Op feat

erged feats
() Materialized artifact
i - a
O Un-materialized or do not exist in EG

Artifacts to execute ; v
O mode1 3 D
. Artifacts to load —
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Reuse Algorithm (Forward-pass)

load cost = 0.06

[EPad > Acc

l.Traverse from the source .
train 2

. | Acc
2.Accumulate run-times

3.For every materialized node op_feats Acc
compare the accumulated run-
time with the load-time Op feat

erged feats
() Materialized artifact
i - a
O Un-materialized or do not exist in EG

Artifacts to execute ; v
O mode1 3 D
. Artifacts to load —
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Reuse Algorithm (Forward-pass)

load cost = 0.06

Load < Acc
4

1. Traverse from the source

2.Accumulate run-times

3.For every materialized node
compare the accumulated run-
time with the load-time

O Materialized artifact
O Un-materialized or do not exist in EG

Artifacts to execute . : load = 1.5
O Cnode1 3 >
. Artifacts to load —
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Reuse Algorithm (Forward-pass)

load cost = 0.06

Load < Acc
4

1. Traverse from the source

2.Accumulate run-times

3.For every materialized node
compare the accumulated run-
time with the load-time

O Materialized artifact \A .
<
O Un-materialized or do not exist in EG Loa Acc

Artifacts to execute . : load = 1.5
O Cnode1 3 >
. Artifacts to load —
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Reuse Algorithm (Forward-pass)

1. Traverse from the source
train 2

2.Accumulate run-times

3.For every materialized node op_feats
compare the accumulated run-
time with the load-time

erged feats

O Materialized artifact
O Un-materialized or do not exist in EG

Artifacts to execute ; v
O mode1 3 D
. Artifacts to load —
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Reuse Algorithm (Backward-pass)

1. Traverse backward from the
terminal traln 2

2.For every loaded artifact,

stop the traversal of its

parents op_ feats
3.Prune artifacts that are not

visited

erged feats

N—
O Artifacts to prune

Artifacts to execute ; v
O mode1 3 D
. Artifacts to load —
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Reuse Algorithm (Backward-pass)

1. Traverse backward from the
terminal

2.For every loaded artifact,
stop the traversal of its
parents

3.Prune artifacts that are not
visited

O Artifacts to prune
O Artifacts to execute

. Artifacts to load

Behrouz Derakhshan et al.

op feats

AN

Giégéed_feats

A X\

b

N—
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Reuse Algorithm (Backward-pass)

l.Traverse backward from the . @
terminal traln_z

2.For every loaded artifact,
stop the traversal of its
parents

3.Prune artifacts that are not
visited

b

O Artifacts to prune
O Artifacts to execute

. Artifacts to load

Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments
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Reuse Algorithm (Backward-pass)

1. Traverse backward from the
terminal traln 2

2.For every loaded artifact,

stop the traversal of its

parents op_ feats
3.Prune artifacts that are not

visited

erged feats

O Artifacts to prune |

Artifacts to execute
Q Caoser 3
. Artifacts to load —

-r g:;’::r’(]:h Center
Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments ' e Tef'""‘%f'ze'

Intelligence Universitat
Berlin




Storage-aware Materialization

e Many duplicated columns in intermediate data artifacts

e Apply column deduplication strategy

train = pd.read csv('train.csv') #

[ad_desc,ts,u _id,price,y]

ad desc = train['ad desc’]

t subset = train[['ts','u id', 'price’]]

y = train['y']

Behrouz Derakhshan et al.

traln
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Storage-aware Materialization

e Many duplicated columns in intermediate data artifacts

e Apply column deduplication strategy

train = pd.read csv('train.csv') # traln

[ad_desc,ts,u _id,price,y]

ad desc = train['ad desc’]
t subset = train[['ts',6 'u id', 'price’]] O SU-bse

y = train['y']

while budget is not exhausted:
1. run materialization algorithm
2. deduplicate the materialized artifacts

3. update the size of unmaterialized

artifact

-r g:;’::r’(]:h Center
Behrouz Derakhshan et al. Optimizing Machine Learning Workloads in Collaborative Environments ' - ll{g{;,‘,i'g;i:‘:e' Jgfvh;j;;ggl

Berlin




Storage-aware Materialization

e Many duplicated columns in intermediate data artifacts

e Apply column deduplication strategy

train = pd.read csv('train.csv') #

[ad_desc,ts,u _id,price,y]

ad desc = train['ad desc’]

t subset = train[['ts','u id', 'price’]]

y = train['y']

Impr(l)Vﬁes‘ Storage utilization and Run-time

Behrouz Derakhshan et al.

traln

while budget is not exhausted:
1. run materialization algorithm
2. deduplicate the materialized artifacts

3. update the size of unmaterialized
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