
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/350021175

The Power of Nested Parallelism in Big Data Processing -- Hitting Three Flies

with One Slap

Conference Paper · March 2021

CITATIONS

0
READS

410

3 authors:

Some of the authors of this publication are also working on these related projects:

Streamline, E2E-clouds View project

Stratosphere View project

Gábor E. Gévay

Technische Universität Berlin

8 PUBLICATIONS 17 CITATIONS

SEE PROFILE

Joge-Arnulfo Quiané-Ruiz

Qatar Computing Research Institute

67 PUBLICATIONS 2,011 CITATIONS

SEE PROFILE

Volker Markl

Technische Universität Berlin

212 PUBLICATIONS 4,823 CITATIONS

SEE PROFILE

All content following this page was uploaded by Gábor E. Gévay on 13 March 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/350021175_The_Power_of_Nested_Parallelism_in_Big_Data_Processing_--_Hitting_Three_Flies_with_One_Slap?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/350021175_The_Power_of_Nested_Parallelism_in_Big_Data_Processing_--_Hitting_Three_Flies_with_One_Slap?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Streamline-E2E-clouds?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Stratosphere-2?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabor-Gevay?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabor-Gevay?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Berlin?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabor-Gevay?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joge-Arnulfo-Quiane-Ruiz?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joge-Arnulfo-Quiane-Ruiz?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Qatar_Computing_Research_Institute?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joge-Arnulfo-Quiane-Ruiz?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Volker-Markl?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Volker-Markl?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Berlin?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Volker-Markl?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabor-Gevay?enrichId=rgreq-1c800058d9d45e5786ec8761fbfcb9f7-XXX&enrichSource=Y292ZXJQYWdlOzM1MDAyMTE3NTtBUzoxMDAwODk4MDY3MTg1NjczQDE2MTU2NDQxMDM4NjQ%3D&el=1_x_10&_esc=publicationCoverPdf

The Power of Nested Parallelism in Big Data Processing
– Hitting Three Flies with One Slap –

Gábor E. Gévay

Technische Universität Berlin

Berlin, Germany

Jorge-Arnulfo Quiané-Ruiz

Technische Universität Berlin

DFKI

Berlin, Germany

Volker Markl

Technische Universität Berlin

DFKI

Berlin, Germany

Abstract
Many common data analysis tasks, such as performing hyperpa-

rameter optimization, processing a partitioned graph, and treating a

matrix as a vector of vectors, offer natural opportunities for nested-

parallel operations, i.e., launching parallel operations from inside

other parallel operations. However, state-of-the-art dataflow en-

gines, such as Spark and Flink, do not support nested parallelism.

Users must implement workarounds, causing orders of magnitude

slowdowns for their tasks, let alone the implementation effort.

We present Matryoshka, a system that enables dataflow engines

to support nested parallelism, even in the presence of control flow

statements at inner nesting levels. Matryoshka achieves this via a

novel two-phase flattening process, which translates nested-parallel

programs to flat-parallel programs that can efficiently run on ex-

isting dataflow engines. The first phase introduces novel nesting

primitives into the code, which allows for dynamic optimizations

based on intermediate data characteristics in the second phase at

run time. We validate our system using several common data anal-

ysis tasks, such as PageRank and K-means. The results show the

superiority of Matryoshka over the state-of-the-art approaches (the

DIQL system as well as the outer- and inner-parallel workarounds)

to support nested parallelism in dataflow engines.

1 Introduction
The success of parallel dataflow engines, such as Spark [48, 49] and

Flink [1, 16], is largely due to abstracting a dataset as an immutable,

distributed collection. They process these datasets via a well-defined

set of parallel operators that provide scalability and ease-of-use.

Yet, many modern data analysis tasks, in domains ranging from

web analytics to graph analytics and machine learning, are not well

supported in these systems. Many of these modern tasks require

nested parallelism [8], which means launching a parallel operation

from the inside of another parallel operation. For instance, the

user-defined function (UDF) of a map operator can invoke further

parallel operations, such as another map operator.

We now explain through examples what nested parallelism is

and when it occurs. First, there can be natural nesting in the data

itself. For example, a nested collection might arise when treating

a matrix as a vector of vectors [13] or when processing a set of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Ru
nt

im
e

(s
)

1
10

100
1000

10000

Nb. of different centroid configurations
1 2 4 8 16 32 64 128 256 512

Outer-parallel Inner-parallel Ideal

performance loss

1

Figure 1: K-means runtimes.
graph partitions, which are themselves collections of graph vertices

and edges. Second, even without nested data, a task can also be

expressed by nested parallel operations. For instance, a task can

perform linear algebra operations on one level [12] and hyperpa-

rameter optimization on a second, outer level [13, 43]. Third, skew

in a grouping key can also raise the requirement of nested paral-

lelism. Due to skew, there can be some large groups and also a large

number of small groups. We, thus, require scalability in both the

group sizes and the number of groups, i.e., on the level of processing

an individual group and on the outer level of processing all groups.

As by design parallel dataflow engines do not support the nest-

ing of parallel operations, users typically employ workarounds that

parallelize on one level only. Specifically, they parallelize the task

either (i) at the level of the outer collection and sequentially pro-

cess an inner collection (outer-parallel) or (ii) the other way around

(inner-parallel). For example, outer-parallel can use a Spark RDD
at the outer level and an array at the inner level. An example of

inner-parallel would be to use a list to sequentially try a set of hyper-

parameter values at the outer level and perform a machine learning

model training for each value using Flink DataSets. Many existing

systems which support nesting of operations in their languages,

actually employ one of these two workarounds when executing

programs [2, 13, 28, 36]. Only a few systems [19, 20, 25, 46] natively

support nested parallelism. However, they do not support iterative

computations at inner nesting levels, which is a typical requirement

in modern data analysis tasks, such as K-means [47].

Unfortunately, choosing between the outer- and inner-parallel

workarounds for the task at hand is far from trivial. As an example,

consider K-means clustering on Spark, which does not support

nested parallelism. We ran K-means with a varying number of

initial configurations, i.e., different sets of initial centroid values.

At the same time, we also vary the computation size for each ini-

tial configuration opposite to the number of initial configurations.

Therefore, we would expect the run time to be constant. Figure 1

shows the results of this experiment, with the ideal performance

considered to be running on just a single initial configuration. We

observe that inner-parallel (i.e., parallelizing one K-means run) is up

to two orders of magnitude faster than outer-parallel (i.e., running

non-parallel K-means instances in parallel with each other) for less

pr
ep

rin
t

https://doi.org/10.1145/nnnnnnn.nnnnnnn

than 64 initial configurations. This is because outer-parallel does

not expose enough parallelization opportunities to utilize all the

available CPU cores. The number of parallel workers is capped by

the number of initial configurations. We also observe that, for more

than 64 configurations, outer-parallel is up to one order of mag-

nitude faster than inner-parallel: the latter has a high job-launch

overhead because each K-means run launches new Spark jobs.

Considering these results, one might think about devising an

optimizer to choose between theworkarounds. However, bothwork-

arounds are far from the ideal performance (the blue line in Figure 1),

with a performance gap (the gray area) of up to 6×. Note that this
performance gap would increase along with the number of levels of

parallel operations. For instance, adding hyperparameter optimiza-

tion to choose a good value for𝐾 leads to three levels of parallelism,

significantly increasing the performance gap.

Wewant to handle nested parallelism in a way that we are always

as close as possible to the ideal case. However, devising such an

approach is challenging for several reasons. First, we would like

to keep existing parallel dataflow engines intact to rely on their

existing code-base maturity and user base. Second, we have to avoid

launching new jobs per inner collection to prevent high job-launch

overheads. This implies that a large number of inner-collections

must be processedwithin the same job, but existing parallel dataflow

engines do not support this feature. Third, we have to maintain a

parallelized execution on each of the inner-collections so that we

expose enough parallelism to make use of all the CPU cores. Thus,

we have to capture the parallelism of both levels inside the same

dataflow job. This is not trivial because current dataflow engines

provide only flat-parallel operations. Fourth, iterative tasks raise

the need for scalability in the total number of iteration steps across

all inner computations.

We propose Matryoshka, a system for nested parallelism that

tackles all the above challenges in an efficient manner, even when

the task involves control flow statements (e.g., iterations). Specifi-

cally, we make the following major contributions:

(1) We devise a novel two-phase flattening process (Sec. 4) that

translates a nested-parallel program into a highly efficient flat pro-

gram, which can run on an existing dataflow engine. Our two-phase

flattening process comes with a set of nesting primitives that allow

us to select the best physical operator implementations at runtime.

We then present techniques to deal with closures in UDFs (Sec. 5).

(2) We show how to flatten programs even in the presence of

control flow statements (e.g., the iteration in PageRank) at inner

nesting levels. This is necessary for true compositionality: Users

should be able to take a program that involves control flow and

place it inside a larger program at an inner nesting level. (Sec. 6)

(3) We show how to leverage the program structure highlighted

by our nesting primitives. Especially, we present three optimization

techniques to produce a highly efficient flattened program. (Sec. 8)

(4) We experimentally validate our system using four common

data analytics tasks and compare it to DIQL [20] as well as the

outer- and inner-parallel workarounds on Spark for its lack of

nested-parallelism support. The results show that Matryoshka is up

to two orders of magnitude faster than the baselines. Importantly,

our system achieves nearly linear scalability. (Sec. 9)

2 Motivating Examples

We detail three common examples where nested parallelism is es-

sential. We then distill two desiderata for proper nested parallelism

support in parallel dataflow engines.

2.1 Bounce Rate
When analyzing website traffic data, a commonly used metric is

the bounce rate [29, 41], which denotes the ratio of the visitors who

visited only one page to all the visitors. Assume we have a function

for calculating the bounce rate from our entire page visit log. The

function computes a single value from a Bag of page visits, where

Bag is the collection abstraction in a dataflow engine (e.g., RDD in

Spark). Consider if now we want to calculate the bounce rate per

day (or per country). Intuitively, we can simply group by the days of

visits and apply our Bounce Rate function on each group. Although

this makes sense in theory, it is problematic in practice because

current dataflow engines have the following (or similar) groupBy
output type: Bag[(Day, Array[Visit])]. Here, the inner collec-

tion, which holds one group of visits, is not the system’s collection

abstraction. As a result, the already written Bounce Rate function

cannot consume it, because its input can only be a Bag. One can
try the usual workarounds explained before: While outer-parallel

would be to rewrite the Bounce Rate function to consume an Array
instead of a Bag, inner-parallel would be to rewrite groupBy to

output an Array[(Day, Bag[Visit])]. However, besides requiring
a considerable extra effort to code them, it is hard to select the best

of the workarounds. Making such a selection depends on a compli-

cated interplay of many factors, such as the group sizes, number of

groups and CPU cores, and memory size. Also note that neither of

the workarounds are suitable in case of skewed group sizes.

Ideally, we want to parallelize on both the outer and inner levels.

This means running the operations and the different invocations of

the Bounce Rate function in parallel. This requires the following

GroupBy output type: Bag[(Day, Bag[...])], which indicates to

the dataflow engine that it should parallelize on both levels when

processing the nested collection. One could then benefit from high

parallelism, low job-launch overhead, and robustness to cluster-

and data-characteristics, such as data skew.

2.2 Partitioned Graph Analytics
We now discuss an example that highlights how proper nested

parallelism support would enhance the composability of differ-

ent algorithms. Graph partitioning, e.g., connected components, is

an important building block in many complex graph processing

tasks [14, 30]. As an example of such a task, consider computing the

average distance between all pairs of nodes in each component of

an input graph. Assume that we have a library of graph processing

functions [22], where both parts of this task are already available:

computing the components, and computing the average distances

for an entire graph. We should then be able to combine these parts

to solve our task in the following straightforward way, because

each component can be itself considered a graph:

connectedComps(g).map(avgDistances)
However, this does not work in current dataflow engines, as the out-

put of the connected components function is not a nested Bag, but
instead it is a Bag of vertices tagged with component IDs [51, 52].

We could try grouping by the component IDs, but we would then

pr
ep

rin
t

run into the same problem as in the previous subsection. We can

solve this problem as before, i.e., with proper nesting support.

2.3 Hyperparameter Optimization
Hyperparameter optimization is a common task in machine learn-

ing, which aims at building a model with many different hyper-

parameter values to find out the setting that works best [6]. For

example, consider the common case of a data scientist who aims at

building a clustering model using the K-means algorithm. To do so,

she would like to run the algorithm with many different random

initializations of the centroids to find the best model for her needs.

In current systems, users typically employ the inner-parallel

workaround to perform hyperparameter optimization: A loop in

the driver program sequentially iterates over the hyperparameter

values and launches dataflow jobs for training a model with each

of these values. However, this workaround suffers from high job-

launch overhead, especially with many hyperparameter values.

Instead of workarounds, native support for nested parallelism

would enable users to express hyperparameter optimization in the

following way: they create a bag of parameter values to try, call

a map on it, and in the UDF of the map train and test a model.

For the training and testing, they can use the system’s parallel

operations. This allows the system to parallelize on both levels:

different hyperparameter values are tried in parallel, while at the

same time individual model training steps are also parallelized. It

is worth noting that machine learning training involves loops, and

thereby a loop appears inside the UDF in this example. Despite this

common characteristic in modern data analytics, state-of-the-art

flattening-based systems [19, 20] do not support loops at inner

nesting levels. Therefore, they are not suitable for this kind of tasks.

Moreover, some iterative hyperparameter optimization algo-

rithms determine the hyperparameter values to try next based

on the results of earlier values. These algorithms often try many

parameter values in one iteration [18, 26]. Also, sampling-based

techniques often dynamically vary the sample size [31]. Thus, it

is important to efficiently handle both a large number of small

samples and a small number of large samples.

2.4 Other Examples
Many other tasks in their natural specification require multiple lev-

els of parallelism. For example, many machine learning algorithms

would benefit from nested parallelism [13], e.g., ensemble learn-

ing [40] and building a multi-class classifier from a binary classifier

using the one-vs-rest approach [35]. Also, modeling a matrix as

a vector of vectors leads to two levels of parallelism. This allows

for an elegant problem formulation of e.g., computing correlations

between all pairs of the column vectors of a matrix [13]. More-

over, parallel dataflow engines often require broadcast variables

for accessing an originally parallel collection inside a UDF as a

non-parallel collection [11, 50]. In this case, nested parallelism is

beneficial as well because then the program is scalable in the size

of the collection that would have originally been broadcasted.

2.5 Desiderata
We observe that, in all the above-mentioned examples, users can

always employ one of the common workarounds: outer- or inner-

parallel. However, besides the effort of implementing them, these

two workarounds suffer from poor performance, being often far

Closures Handler

Parser

InnerScalar
InnerBag NestedBag

Nested-Parallelism 
Abstraction

ControlFlow 
Handler

SparkTranslator

Flat-Parallel 
Program

Explicitly 
Nested-Parallel  

Program

Nested-Parallel  
Program

Section 4

Section 8

Section 6

Section 5

on-the-fly 
statistics

efficient  
implementations

MATRYOSHKA

High-level language runtime process
compile-time process

Figure 2: Matryoshka architecture.

from the ideal (see Figure 1). The reader might think users can man-

ually write flattened versions of their nested programs to solve the

aforementioned problems. However, this is far from being realistic

and practical: Already for simple cases, such as the Bounce Rate

example (Listing 1), it is hard to devise a flattened version (Listing 3).

This just becomes more challenging, even for expert users, when

there are control flow statements at inner nesting levels. Further-

more, manual flattening is even less realistic when working with

library functions written by someone else, such as in Sec. 2.2.

To solve all these performance and usability problems, it is crucial

to devise an automatic solution for nested parallelism that provides

scalability, and ease-of-use: Users should not worry about work-

arounds or manual flattening. With this in mind, we identify two

core desiderata for proper nested parallelism support: The system

must (i) allow applications to use scalable operations both inside

and outside their UDFs, and (ii) apply nested parallel operations

over the provided dataset abstractions leading to nested collections.

3 Overview
In the following, we introduce Matryoshka, a system that flat-
tens [10, 19, 45, 46] an input program that has multiple levels of

parallelism (nested-parallel program) into a program with only

one level of parallelism (flat-parallel program). This way, standard

dataflow engines can execute the program fully in parallel.

Figure 2 illustrates the general architecture of Matryoshka. Users

provide their programs in a high-level data analytics language

that allows for nesting collections and parallel operations. We use

Emma [2, 3] as our query language, which is an embedded domain-

specific language in Scala. This means that Emma is expressed in

a general-purpose programming language (similarly to Spark and

Flink). For example, Listing 1 shows an Emma program for our per-

day bounce rate example. The crucial difference to Spark and Flink

is that Emma’s data collection type (Bag) and the operations over a
Bag can be nested. It also allows for imperative control flow, such

as while loops and if statements. Note that our proposed techniques

are compatible with other analytics languages that have nesting,

such as Pig Latin [36], SQL+nested data [39], MRQL/DIQL [19, 20].

Given a nested-parallel Emma program as input (the user’s pro-

gram), Matryoshka removes any nesting from (i.e., flattens) the

program so that it can be executed on a standard dataflow en-

gine (without resorting to the inner-parallel or outer-parallel work-

arounds). Matryoshka performs this flattening in two phases. First,

a parsing phase rewrites the input program by introducing into

pr
ep

rin
t

1 val visits: Bag[(Date, IP)] = readFile(...)
2 val visitsPerDay: Bag[(Date, Bag[IP])] =
3 visits.groupByKey()
4 visitsPerDay.map{
5 (day: Date, group: Bag[IP]) =>
6 val countsPerIP = group.map((_, 1)).reduceByKey(_+_)
7 val numBounces = countsPerIP.filter(_._2 == 1).count()
8 val numTotalVisitors = group.distinct().count()
9 val bounceRate =
10 numBounces / numTotalVisitors
11 return bounceRate
12 }

Listing 1: Bounce rate program (Sec. 2.1) using nested bags
and nested parallel operations. The brown parts are not sup-
ported in current dataflow engines.

the code a set of new nesting primitives (InnerScalar, InnerBag,
and NestedBag). These nesting primitives inform the next phase

about the nesting structure of the program. Still in the parsing

phase, Matryoshka turns imperative control flow constructs into

higher-order function calls. At the same time, it also makes closures

explicit, i.e., when a UDF refers to an outside variable, Matryoshka

adds it as a parameter to the UDF.

One can see the output of the parsing phase as a logical plan,

because the actual operator implementations are still left open. In

other words, the operations of the InnerScalar, InnerBag, and
NestedBag nesting primitives are not yet translated to flat opera-

tions of a parallel dataflow engine. Thus, our next phase, which we

call lowering phase, is responsible for this final translation to a flat

program: It executes the modified program outputted by the parsing

phase, and when it encounters an operation of the above nesting

primitives, it selects a concrete implementation and executes it. This

lowering phase happens at runtime because the selection of the

optimal implementation depends on the cardinality of intermediate

datasets. Thus, for optimization purposes, Matryoshka keeps track

of the cardinalities at runtime by exploiting the program structure

highlighted by our nesting primitives.

For brevity reasons, in the following three sections, we assume

that there are only two levels of parallelism in the input program.

We show the completeness (going beyond two levels of parallelism)

and correctness of Matryoshka in Section 7.

4 Flattening

Our goal is to produce efficient flat-parallel programs from nested-

parallel programs to enable execution on standard dataflow engines.

This is challenging because finding the optimal operator implemen-

tations requires knowledge about data characteristics, which are

typically not available at compile-time. We tackle this challenge

by introducing a novel two-phase flattening process: the parsing
(performed at compile time) and lowering (performed at runtime)

phases. We then present the core concept of lifting [8, 45], which

we rely on throughout both phases. Next, we explain the three prim-

itives the parsing phase uses to make nested-parallel operations

explicit (InnerScalar, InnerBag, and NestedBag). We also show

how the lowering phase resolves these primitives into calls to the

standard, flat data-parallel operations of standard dataflow engines.

Finally, we show how to handle such bag operations that appear in

a UDF of an operation other than map.

1 val visits: Bag[(Date, IP)] = readFile(...)
2 val visitsPerDay: NestedBag[Date, IP] =
3 visits.groupByKeyIntoNestedBag()
4 visitsPerDay.mapWithLiftedUDF {
5 (day: InnerScalar[Date], group: InnerBag[IP]) =>
6 val countsPerIP = group.map((_, 1)).reduceByKey(_+_)
7 val numBounces = countsPerIP.filter(_._2 == 1).count()
8 val numTotalVisitors = group.distinct().count()
9 val bounceRate =
10 binaryScalarOp(numBounces, numTotalVisitors)(_ / _)
11 return bounceRate
12 }

Listing 2: Explicitly nested-parallel bounce rate program.

4.1 Two-Phase Flattening
We perform the flattening of a nested-parallel program in two

phases so that we can enable further optimizations (Sec. 8). We

first make explicit all nested-parallel operations in a nested-parallel

program (the parsing phase). We then translate these explicit nested-

parallel operations into efficient implementations having a single

level of parallelism (the lowering phase).
4.1.1 Parsing Phase
This phase receives a nested-parallel program as input and out-

puts a program where all nested-parallel operations are made ex-

plicit. This is carried out at compilation time leveraging meta-

programming, i.e., manipulating the abstract syntax tree of the

input nested-parallel programs provided by the user. Compile-time

meta-programming is necessary for two reasons. First, we need

to turn scalar1 operations and control flow operations into staged

computations.
2
These staged versions create a representation of

the computation, which the system then can translate to a flat-

parallel computation in the lowering phase. Second, it is easier to

distinguish between Bags in different nesting situations at compile

time while looking at the code as data, rather than at runtime. This

distinction allows us to represent them differently with flat Bags.
Let us illustrate this phase through the Bounce Rate example in

Listing 1. The parsing phase takes as input this program and outputs

the explicitly nested-parallel program in Listing 2 by performing

the following main changes (highlighted in brown). First, it wraps

scalars inside UDFs as InnerScalars (the lowering phasewill need

to turn these into Bags). For example, in Listing 1, numBounces
and numTotalVisitors in Lines 7–8 are scalars (integers), while

in Listing 2 they are InnerScalars. Second, it turns Bags inside

UDFs into InnerBags. An example is the group variable in ln. 5 of

Listing 1 and 2. Third, it turns nested bags, i.e., Bag[(A,Bag[B])],
into NestedBag[A,B], e.g., visitsPerDay in ln. 2.

Recall that the result of this phase is an explicitly nested-parallel

program. One can see this as a logical plan that enables us to

perform optimizations in the lowering phase. Concretely, we can

choose the best physical implementation for operators and the pro-

gram structure implicit in the explicitly nested-parallel program.

4.1.2 Lowering Phase
This phase receives an explicitly nested-parallel program (Listing 2)

and outputs a flat-parallel program (Listing 3). More specifically,

it resolves the operations of the InnerScalar, InnerBag, and

1
We use the term scalar for any non-Bag type, even tuple types, such as (A,B).

2
Staging a computation means creating a representation of the computation instead

of executing it directly. In general, staging allows a system to inspect a computation,

transform it, instrument it, or execute it lazily.

pr
ep

rin
t

1 val visits: Bag[(Date, IP)] = readFile(...)
2 val countsPerIPPerDay: Bag[((Date, IP), Int)] =
3 visits.map((_, 1)).reduceByKey(_+_)
4 val numBouncesPerDay: Bag[(Date, Int)] =
5 countsPerIPPerDay.filter(_._2 == 1)
6 .map{case ((day,ip),count) => (day,1)}.reduceByKey(_+_)
7 val numTotalVisitorsPerDay: Bag[(Date, Int)] =
8 visits.distinct()
9 .map{case (day,ip) => (day,1)}.reduceByKey(_+_)
10 val bounceRatePerDay: Bag[(Date, Double)] =
11 (numBouncesPerDay join numTotalVisitorsPerDay)
12 .map{case (day, (numBounces, numTotalVisitors)) =>
13 numBounces / numTotalVisitors}

Listing 3: Flat-parallel bounce rate program.

NestedBag nesting primitives to flat physical implementations

that are executable on a parallel dataflow engine. The resulting

flat-parallel program is both equivalent to the initial input nested-

parallel program (Listing 1) and executable on any standard parallel

dataflow engine. For example, in our system architecture (Figure 2),

SparkTranslator performs this phase for Spark. There could be more

translators added for other parallel dataflow engines, e.g., for Flink.

4.2 Lifting UDFs
Let us start defining what it means to lift a UDF. As current dataflow
engines cannot handle parallel Bag operations inside a map UDF,

we have to remove the map and perform the UDF’s operations

at the top level. This is known as lifting UDFs. Formally, if the

original UDF had the type A=>B, the lifted version will have the type
Bag[A]=>Bag[B]. Intuitively, lifting a UDF consists of moving all

the operations that were originally inside the UDF to the top level.

Lifting an operation does not only move it but also changes the

operation to make it work. Originally, an operation that is inside a

UDF is invoked as many times as the UDF is invoked (disregarding

loops and other control flow for now). In a single call, the operation

computes just one bag or one scalar as its output inside the UDF.

However, the lifted version of an operation is invoked just once in
total. During this single invocation, it needs to compute what the

original version computed over all the invocations of the UDF. If the

original operation computed a scalar S, then the lifted operation has
to compute a Bag[S]. If the original operation computed a Bag[A],
then the lifted operation has to compute many bags, which could

be expressed as a Bag[(T,Bag[A])]. Here, T denotes a tag type,

which identifies inner bags by which UDF call they appeared in, see

Sec. 4.3. However, even though lifting bag operations in this way

would indeed remove the nesting of operations, but it would also

introduce nested bags. Thus, the actual lifted operation needs to

represent the nested bag with a flat bag (as explained in Sec. 4.4).

For example, the operations in Listing 1 ln. 7 have lifted versions

in Listing 3 ln. 4–6. Observe the change in the variable names:

the original operations computed numBounces for a single day

(an Int), while the lifted versions compute numBouncesPerDay (a

Bag[Int]), i.e., the number of bounces for each of the days.

In our two-phase flattening, lifting a map UDF is then performed

as follows. The parsing phase does not remove the map yet, it just

changes the map into a mapWithLiftedUDF, to make it explicit to

the lowering phase that this UDF needs to be lifted. The reason

we do not directly perform lifting in a single phase is that our

optimizations in Sec. 8 can be performed only at runtime: They

need the information of which operations were in the same UDF.

In contrast to a normal map, a mapWithLiftedUDF calls its UDF

only once (during the lowering phase), and this single execution

operates on all the elements of the bag that mapWithLiftedUDF is

called on. Inside the UDF of the mapWithLiftedUDF, a scalar that
was in the original UDF is replaced with an InnerScalar, which
is represented by a Bag after the lowering phase. Similarly, a Bag
in the original UDF is replaced with an InnerBag, which has the

same information as a Bag[(T,Bag[A])], but is represented by a

flat bag after the lowering phase.

4.3 InnerScalar
Lifting a UDF requires us to lift all its scalar operations. The chal-

lenge here is that scalar variables originally do not involve any

system-provided types, e.g., just a single Int value, and not some-

thing like a Bag[Int]. This is a problem because the system needs

to manipulate these values to lift their operations.

We tackle this challenge by leveraging compile-time metapro-

gramming [15], to change the code. Specifically, the parsing phase

wraps scalar variable types inside InnerScalar, i.e., a scalar type S
turns into InnerScalar[S]. At the same time, the parsing phase

wraps scalar operations in the operations of InnerScalar. Specif-
ically, b = f(a), where a and b are scalars, and f is a unary scalar

operation, turns into b = unaryScalarOp(a)(f). Similarly, c =
f(a,b), where a, b, and c are scalars and f is a binary scalar op-

eration, turns into c = binaryScalarOp(a,b)(f). For example,

if we have c = a + b somewhere in a UDF, then what the system

has to know is that c is computed from a and b by some oper-

ation. Thus, we translate such a line of code as a binary scalar

operation c = binaryScalarOp(a,b)(_+_), where a, b, and c
are all InnerScalars. As a more concrete example, Listing 2 shows

such a lifted UDF with several InnerScalars in it. In summary,

InnerScalar makes the scalar operations inside UDFs explicit in

the logical plan outputted by the parsing phase, enabling optimized

flat implementations in the lowering phase.

The lowering phase then resolves an InnerScalar to a flat Bag
containing all the values that the variable would have in all the

invocations of the original UDF. By using a Bag, we are scalable
in the number of UDF invocations of the original code. For exam-

ple, in Listing 1, the map UDF is originally called for each day, and

numBounces is a scalar that is computed for each day. The low-

ering phase replaces this scalar with numBouncesPerDay, a Bag
containing the values of numBounces for each day.

In detail, the implementation of unaryScalarOp is a map, which
applies the given unary function (negation in the above example)

to each of the scalars. The implementation of binaryScalarOp
is more sophisticated because we first have to bring together

matching pairs of scalar values from its two inputs. That is, we

must find such pairs of scalar values that would have belonged

to the same original UDF invocation. Doing so allows us to exe-

cute the scalar operation over such pairs with a map. To achieve

this scalar match up, we add a tag to each element of the Bag
that represents the InnerScalar. A tag identifies invocations

of the original UDF. For instance, in Listing 3 the tags iden-

tify the days, and therefore numBouncesPerDay is a Bag[(Date,
Int)]. We can then perform an equi-join between the two input

Bags representing the two InnerScalars, being the tag the join
key. In more detail, we implement binaryScalarOp(a,b)(f) as

pr
ep

rin
t

a’.join(b’).map(f), where a’ and b’ are the Bags represent-
ing the a and b InnerScalars. For example, the flat version of

Listing 2 ln. 10 is Listing 3 ln. 10–13.

We create tags for all InnerScalars as follows: If the

InnerScalar is created from another InnerScalar (or

InnerBag), we simply propagate the tags from the input; if

mapWithLiftedUDF runs on a NestedBag (Sec. 4.5), we then

propagate the tags from the NestedBag; if mapWithLiftedUDF
runs on a non-nested Bag, we create the tags using the standard

zipWithUniqueId operation, which assigns unique tags. Note

that the set of tags is the same for all InnerScalars inside a UDF,
which is important for our optimizations in Sec. 8.

Earlier, we showed simplified generic type parameters for

InnerScalars. However, the full type involves the type of the

tags as well as the type of the original scalar: InnerScalar[T,S].
After the lowering phase, this is represented as a Bag[(T,S)]. For-
mally, unaryScalarOp(s)(f) is resolved by the lowering phase

to s’.map((t,x)=>(t,f(x))), where s’ is a Bag[(T,S)] rep-

resenting s. Moreover, binaryScalarOp(a,b)(f) is resolved to

a’.join(b’).map((t,(x,y))=>(t,f(x,y))), where a’ and b’
are the bags representing the a and b InnerScalars.

4.4 InnerBag
Similarly to scalars, we must lift each Bag operation that is inside a

UDF when lifting it. Originally, a Bag operation in a UDF creates

many bags in many UDF invocations. The lifted version creates

just one flat bag for all the invocations of the UDF. This eliminates

the per-bag overhead occurring in each UDF invocation with the

inner-parallel workaround. Still, lifting bag operations is tricky

because the optimal physical implementation for joins and cross

products in some flattened operations depends on intermediate data

characteristics visible only at runtime. We rely on our two-phase

flattening process to overcome this difficulty.

The parsing phase introduces an InnerBag variable instead of

each Bag variable in the UDF. An InnerBag represents a collection

of bags, where each bag belonged to one invocation of the origi-

nal UDF. For example, in Listing 1 countsPerIP is a different bag

in each invocation of the original map UDF. In the parsing phase,

it is replaced by an InnerBag (Listing 2 ln. 6), which represents

all these bags. InnerBag[A] contains the same information as a

Bag[(T,Bag[A])]: The T tags identify a UDF invocation, where

the corresponding inner bag occurred. However, the operations

of InnerBag work with the inner bags: For each of the classic op-

erations of Bag[A] (e.g., map, filter, join, etc.), InnerBag[A]
has a corresponding operation that performs the same computa-

tion on all the inner bags. Formally, if there is a bag operation

op: Bag[A]=>Bag[B], then its lifted version op’ has the type

Bag[(T,Bag[A])]=>Bag[(T,Bag[B])], and performs op’(xss)
= xss.map(op). However, this is a nested bag and we have to rep-
resent InnerBags with flat bags.

The lowering phase resolves an InnerBag to be a flat Bag,
which consists of all the elements of all the bags that the

InnerBag replaces. Similarly to InnerScalar, each element is

tagged with an identifier of the original UDF invocation. Formally,

InnerBag[T,E] is resolved by the lowering phase to Bag[(T,E)],
where T is the tag type and E is the original Bag’s element type. For

example, from Listing 2 to Listing 3 countsPerIP is replaced by

countsPerIPPerDay, which contains all the values from all the

bags that countsPerIP has, tagged by the day. As a more concrete

example, assume that, inside a UDF, there is a Bag variable whose

value is {apple, orange} in one UDF invocation and {dog, cat} in an-

other. Then, the lowering phase could represent the corresponding

InnerBag as the flat bag {(0, apple), (0, orange), (1, dog), (1, cat)}.
InnerBag’s operations mirror the operations of normal Bags:

their signatures are the same but their inputs and outputs are

InnerBags and/or InnerScalars. The implementations of the op-

erations are the lifted versions of the corresponding Bag operations.

We lift stateless Bag operations, which perform over individual

elements (such as map, flatMap, and filter), by performing the

UDF on the second component of the pairs and by forwarding

the tags unchanged. Still, some other Bag operations are stateful

(e.g., aggregations). We lift these operations by keeping the state

per tag. For example, a reduce turns into a reduceByKey, where
the key is the tag. Calling reduce on an InnerBag then results in

an InnerScalar. In case a Bag operation already has a per-key

state, we lift it by creating a composite key from the original key

plus the tag. For instance, we lift b.reduceByKey(f) (Listing 1

and 2, ln. 6) as:

b'.map{case (t, (k, v)) => ((t, k), v)}
.reduceByKey(f)
.map{case ((t, k), v) => (t, (k, v))}

We also lift joins with a similar rekeying. Some other operations’

lifted versions are simply identical to the original operations, such

as distinct and union. To handle operations that produce output
for empty input bags (e.g., count has to produce 0), we additionally

need to store all the tags in a separate Bag[T]. This is because
InnerBag’s representation Bag[(T,A)] does not have any element

corresponding to empty inner bags. We store the bag of tags once

per lifted UDF because they are same for all InnerBags in a UDF.

4.5 NestedBag
While InnerScalar and InnerBag are representations for scalars

and non-nested Bags inside a UDF, we still need to lift a nested Bag
that is outside a UDF. The parsing phase introduces the NestedBag
for a nested Bag outside a UDF. This is the case for Listing 1 ln. 2,

where a nested Bag appears from a groupBy. Recall NestedBags
are a typical case in nested-parallel programs (Sec. 2.1–2.2).

To explain how the lowering phase translates a NestedBag to

a flat Bag, we first focus on the simplest case of a nested bag:

Bag[Bag[I]], where I is some arbitrary scalar type. Similarly

to an InnerBag, we represent this as a flat Bag containing all the

elements of the inner bags. Each element of this flat Bag has a

tag T that identifies which of the inner bags it originally belonged

to: Bag[(T,I)]. For instance, if the original nested bag is {{apple,
orange}, {dog, cat}}, then the lowering phase could represent the

NestedBag with the flat bag {(0, apple), (0, orange), (1, dog), (1, cat)}.
Note that this is exactly the InnerBag type.

Still, in the more general case, the element type of the outer

Bag is usually more complicated. It usually has some other compo-

nents besides the inner Bag. We capture these other components

in an arbitrary type O. We, thus, have a nested Bag before the pars-

ing phase as follows: Bag[(O,Bag[I])], i.e., the element type of

the outer Bag is a pair of a scalar and an inner Bag. The parsing
phase turns this into a NestedBag[O,I]. Our flat representation
of such a nested Bag is composed of an InnerScalar[T,O] and

an InnerBag[T,I]. For example, if our original nested Bag was

{(fruit, {apple, orange}), (animal, {dog, cat})}, then the NestedBag

pr
ep

rin
t

could be represented by the InnerScalar {(0, fruit), (1, animal)}
and the InnerBag {(0, apple), (0, orange), (1, dog), (1, cat)}.

We further illustrate the NestedBag by explaining the

grouping of a flat bag, which is a common case of NestedBags.
Specifically, let groupByKey be the operation that takes

a bag of key-value pairs Bag[(K,V)] and produces a

nested bag Bag[(K,Bag[V])]. Thus, grouping the flat bag

{(fruit,apple),(fruit,orange),(animal,dog),(animal,cat)} would result

into the nested bag already shown above.

4.6 Lifting non-Map UDFs
So far, we focused on lifting the UDF of a map. We now explain how

to lift UDFs of other operations. We reduce other cases to lifting

map UDFs via some simple program transformation. We basically

split a complex operation into a map with a UDF plus the UDF-

less version of the original operation. For example, consider the

case where the input program has xs.groupBy(keyFunc). We can

change this into xs.map(x=>(keyFunc(x),x)).groupByKey(),
where groupByKey is the UDF-less version of groupBy (i.e., it

uses the key that is already in the input tuples instead of a UDF).

Similarly, we can use the same splitting process for joins whose

keys are given in UDFs, and for filter. In contrast, FlatMap is

a slightly different case. Here, we change xs.flatMap(f) into

xs.map(f).flatten(), where flatten is a special operation that

removes the nesting structure. Flatten’s implementation simply

removes the tags from an InnerBag.

5 Dealing with Closures
Previously, we saw how to lift UDFs via three primitives for nested-

parallelism, namely InnerBag, InnerScalar, and NestedBag. We

now address the case where a UDF refers to a variable that is defined

outside the UDF, a.k.a., closure. For example, when initializing the

ranks in PageRank, we first have to compute the initial weight from

the number of pages and then use this value inside a UDF:

val initWeight: Double = 1.0d / pages.count()
val initPR = pages.map(x => (x, initWeight))

The challenge is that initWeight is in the memory of the dri-

ver program, while the UDF typically runs on the worker nodes.

Dataflow engines handle this situation by simply broadcasting

initWeight to all workers in the cluster. However, as we will

shortly see, we have to make additional considerations in our sys-

tem. We will distinguish between two cases below, depending on

whether the UDF that has the closure is lifted.

5.1 Unlifted UDF Case
We first explain when this case happens. Consider the above two

lines, where the UDF of the map is not lifted but has a closure.

Assume these two lines are themselves inside an outer UDF and

that such an outer UDF gets lifted because of its bag operations.

In this case, initWeight becomes an InnerScalar and the map
becomes a lifted map (but its UDF is still not lifted).

The difficulty here is that the original reference to initWeight
referred to just a single scalar value. Leaving the code unchanged,

the reference to initWeight would refer to all the scalars that are

in the InnerScalar. Instead, we model a map as a two-input oper-

ation: one input is the pages bag and the other is the initWeight
InnerScalar. It now becomes apparent that we need a similar join

on the tags as in a binary InnerScalar operation (see Sec. 4.3).

That is, each different value of initWeight has to meet the appro-

priate values of pages, i.e., those with the same tag. We do so by

introducing mapWithClosure, which takes the closure as an extra

argument and hands it into the inner UDF as an extra argument:

pages.mapWithClosure(initWeight, (x, clos) => (x, clos))
In more detail, mapWithClosure performs a join on the tags be-

tween the bags representing pages and initWeight. Note that,
due to this example’s simplicity, the inner UDF ended up being an

identity function, but this is not the case in general.

5.2 Lifted UDF Case
Consider our hyperparameter optimization in Sec. 2.3, where the

Bag containing the training data is defined at the outermost level

but it is used inside a lifted UDF. This case is different from the

unlifted UDF case above because a lifted UDF is called inside the

driver program. As a result, we do not need to broadcast the closure

to the worker nodes for the UDF to access it.

The difficulty in this case resides in that the closure is just a

normal bag or scalar (not InnerBag). We, thus, create a lifted ver-

sion of the referenced bag (or scalar), where it is replicated for each

different tag value that is in the lifted UDF. However, this can make

it very large, as it involves replicating the bag (or scalar) as many

times as the non-lifted version of the UDF would have been invoked.

To mitigate this problem, we create “half-lifted” operations, where

only some of the inputs are lifted. For instance, the following three

lines of code represent a half-lifted equi-join between left and

right, where left is an InnerBag and right is a normal bag

(left.repr accesses the flat bag representing the InnerBag):
val rekeyed = left.repr.map{case (l,(k,v)) => (k,(l,v))}
val joined = rekeyed join right
joined.map{case (k, ((l, v), w)) => (l, (k, (v, w)))}

6 Handling Control Flow Statements
We now discuss how to flatten programs in the presence of control

flow statements inside UDFs. If Matryoshka has to lift a UDF con-

taining such statements, then it also needs to lift these statements.

However, doing so is challenging because control flow might go

differently in different executions of the UDF (e.g., loops exit at

different iterations, or different if-branches are taken). The lifted

version of a control flow statement must cover all these different

executions. We leverage our two-steps flattening process to tackle

this challenge. In the parsing phase, we first substitute control flow

statements with staged function calls (Sec. 6.1). In the lowering

phase, we then lift while loop and if statements (Sec. 6.2).

6.1 Control Flow as Higher-Order Functions
As a first step in the parsing phase (before we represent nested oper-

ations with our primitives), we change control flow statements into

(higher-order) function calls. This enables us to change the function

calls to the lifted versions. We, thus, encapsulate the lifted versions

inside functions, which run during the lowering phase. This is

similar to the operations of our nesting primitives (InnerScalar,
InnerBag, and NestedBag), which encapsulate the lifted versions

of bag and scalar operations. The function signatures are as follows.

We express an if statement as a function that takes as arguments

the condition as a boolean value and a function for each of its

branches. Likewise, we express a while loop statement as a function

that takes as argument the body as a function. This body function

takes the previous values of the loop variables as input and returns

pr
ep

rin
t

1 var bodyIn: InnerBag[T,A] = initialBodyIn
2 var result = Bag.empty
3 do {
4 val (bodyOut, cond) = bodyFunc(bodyIn)
5 val bodyOutWithCond = bodyOut.joinOnTags(cond)
6 bodyIn = bodyOutWithCond.filter(_._2).map(_._1)
7 val finished = bodyOutWithCond.filter(not _._2).map(_._1)
8 result = result.union(finished)
9 } while (bodyIn.repr.notEmpty)

Listing 4: Lifted while loop.

both the next values of the loop variables and the value of the exit

condition. Note that these higher-order functions are similar to how

several parallel dataflow engines support control flow statements.

6.2 Lifting Loops and If Statements
We now focus on how we lift while loops and if statements. A lifted

loop is basically a loop that performs the work of many unlifted

loops. In other words, the first iteration of a lifted loop executes

the first iteration of all the original loops, the second iteration of a

lifted loop executes the second iteration of all the original loops,

and so on. The challenge is that the original loops might finish at

different iterations from each other.

We tackle this challenge by relying on the abstractions for lifted

operations introduced in Sec. 4. Assume we have already lifted all

the bag and scalar operations inside the loop body, i.e., substituted

scalars and bags with InnerScalars and InnerBags. In this case,

we do not need to further modify the loop body when lifting the

loop. This is because the lifted versions of all the scalar and bag

operations inside the loop body already do exactly what the lifted

loop needs: it executes the original operation on many scalars or

bags at the same time. Note that we also turn variables that are

passed between iterations into InnerBags and/or InnerScalars.
Still, we must manage data that enters or leaves the body at each

iteration and lift the loop control logic. Specifically, we need to:

(P1) discard those parts of InnerBags and InnerScalars from
the iterations whose original loops have finished;

(P2) save the result of the discarded parts as soon they finish; and

(P3) exit the lifted loop when all the parts are discarded, i.e., when

all the original loops have finished.

To check if an original loop has finished, we leverage the internal

flat bag representation of InnerScalars (i.e., Bag[(T,A)]). Recall
that T is a tag identifying the original UDF invocations and A is

the type of the original scalar. Thus, the InnerScalar of the exit

condition is represented as a Bag[(LoopID, Boolean)], which
tells us for each original loop if it should continue. We leverage this

bag to achieve the above P1-P3 as follows (see Listing 4):

Impl. of (P1). We join each InnerBag and InnerScalar that en-

ters the loop bodywith the lifted exit condition on the tag to identify

and discard those loops that already finished (Lines 5 & 6);

Impl. of (P2). We save into results bags exactly those values that

we filtered out above, which will contain all final results once the

lifted loop exits (ln. 7–8);

Impl. of (P3). If (P1) did not let through any element, then we

exit the lifted loop. (ln. 9)

In case of if statements, the challenge is that some of the exe-

cutions of the original if statement would have executed the then
branch, while some others the else branch. Therefore, a lifted if

statement executes both branches but lets get in, into each of them,

only the values for those tags for which the if condition had the

appropriate value. For this, it uses join and filter in the same way

the lifted loops handle the data from loops that have finished.

7 Completeness and Correctness
We demonstrate the completeness and the correctness of our flat-

tening procedure. We provide proof sketches because of space lim-

itations, but the interested reader can find the full proofs in our

technical report [5]. Before proceeding, let us mention that we as-

sume that bags do not appear inside other data structures, such

as Array[Bag[...]]. We believe this is a negligible limitation

because such nesting structures mainly arise when employing dif-

ferent variations of the inner-parallel workaround only. We also

assume that the UDFs of bag aggregations, such as reduce, do not

contain bag operations, which is an uncommon case in practice.

Theorem 1. (Completeness) Matryoshka can flatten any nested
program expressed with the standard bag operations and without bags
embedded in other data structures or in aggregation UDFs.

Proof. (Sketch) For brevity, we first show the proof for two

levels of parallelism. The proof shows that the parsing phase can al-

ways transform nested bags and UDFs with bag operations into the

InnerBag, InnerScalar, NestedBag nesting primitives (which

have flat implementations). As mentioned before, a preparation step

of the parsing phase eliminates those non-map operations that have

UDFs with bag operations (Sec. 4.6), eliminates closures (Sec. 5),

and transforms control flow statements into a functional repre-

sentation (Sec. 6.1). Then, the parsing phase traverses the code

statement-by-statement (compound statements are broken down

into atomic statements), and makes local changes on certain state-

ments. Thus we focus on proving that the parsing phase can handle

any statement in the input program. The next two paragraphs cover

statements outside and inside UDFs, respectively.

The parsing phase modifies a top-level statement, i.e., that is

not inside any UDF, based on whether its UDF contains bag op-

erations and whether its inputs and/or outputs are nested, which

leads to three cases: (1) The operation’s UDF contains bag opera-
tions. A top-level operation can only be a map in this case, because

all operations whose UDFs involve bags were eliminated by our

aforementioned preparation step. Thus, the parsing phase turns

the map into a mapWithLiftedUDF3; (2) Flat input and nested out-
put. If the top-level operation is a map, the parsing phase modi-

fies it as in the previous case. Otherwise, the top-level operation

is a groupByKey (no other operation could introduce a nested

bag from a flat bag) and hence the parsing phase turns it into a

groupByKeyIntoNestedBag; (3) Nested input. This case occurs

because of earlier statements whose outputs were already trans-

formed into a NestedBag. Here, if the top-level operation is a map,
the parsing phase turns it into a mapWithLiftedUDF. Otherwise,
the top-level operation can only be a UDF-less bag operation, which

all have their flattened versions on NestedBag.
For statements inside UDFs, the parsing phase has to change

them only if it lifts the UDF (i.e., when the UDF has bag operations).

In this case, it turns each scalar value into an InnerScalar and

each Bag into an InnerBag. Operations of these types are substi-
tuted in place of the original operations as explained in Sec. 4.3 and

3
Recall that mapWithLiftedUDF’s UDF’s input/output types involve InnerBag
and/or InnerScalar based on the input/output types of the original map UDF.

pr
ep

rin
t

4.4. It also turns control flow operations into their lifted equivalents

(Sec. 6.2). Note that the lifting of operations that are in the bodies

of control flow constructs proceeds as usual, i.e., a surrounding

control flow construct has no effect on the lifting of an operation.

We now consider the case of handling more than two levels

of parallelism. Here, we create a more complex NestedBag type,

which has a separate instance of InnerScalar for each interme-

diate level and one instance of InnerBag for the innermost level.

Lifting tags for three or more levels are composed of one lifting tag

for each outer level. These tags are combined into a composite key,

which ensures that the implementations of the lifted operations are

the same for InnerBags and InnerScalars at any level. □

Theorem 2. (Correctness) Matryoshka always produces a flat
program that is equivalent to the original input nested program.

Proof. (Sketch) The proof first shows that changing the data

from the original representation to our flattened representation is

an isomorphism. That is, we can go from the original data represen-

tation to our flattened data representation by such a map
4 𝑚, that

1)𝑚 is a bijection, and 2)𝑚 preserves all the bag- and scalar opera-

tions. Bijection here means that different original data structures

are mapped to different flattened data structures.𝑚 preserving an

operation 𝑓 means that𝑚(𝑓 (𝑥)) = 𝑓 ′(𝑚(𝑥)), where 𝑓 is an origi-

nal operation in the user’s program, and 𝑓 ′ is the flattened version

of the operation, operating on the flattened data. In other words,

if we first perform an original operation and then change to the

flattened data representation, we get the same result as if we first

changed to the flattened data representation and then performed

the flattened version of the operation. For binary operations, preser-

vation means𝑚(𝑓 (𝑥,𝑦)) = 𝑓 ′(𝑚(𝑥),𝑚(𝑦)). After we establish the

isomorphism property for all the operations, the next step of the

proof is to note that the entire program from the inputs up to just

before the final output operation
5
is a composition of operations

that are each preserved by𝑚. Thus, the entire program up to just

before the output operation is also preserved by 𝑚. As a result,

an output operation in the flattened program receives the same

data as if we ran the original program and just changed to the flat

data representation at the last moment before the output operation.

The final step of the proof is to show that for an output operation

𝑜 , we can implement a flattened output operation 𝑜 ′, for which
𝑜 (𝑥) = 𝑜 ′(𝑚(𝑥)) (or, equivalently, 𝑜 ′(𝑥 ′) = 𝑜 (𝑚−1 (𝑥 ′))). That is,
the flattened output operation creates the same output file from

the flat data representation as the original output operation would

have created from the nested representation. This way, the flattened

program will produce the same output as the original program. □

8 Optimizations
We now discuss how the lowering phase provides concrete operator

implementations for the logical plan outputted by the parsing phase.

It uses an optimizer to choose the right physical operator implemen-

tations at runtime, based on different data characteristics. Most of

the optimizations depend on the sizes of the bags representing the

InnerScalars. Fortunately, the structure of the program, which

is visible at the logical plan level, gives vital information about the

4
The wordmap is used here in the mathematical sense, as opposed to the bag operation

map in other parts of the paper.

5
By output operation we mean writing a bag to a distributed filesystem, such as HDFS.

sizes of InnerScalars to the optimizer. In the remainder of this

section, we first discuss how we track the sizes of InnerScalars
and discuss optimizations based on these sizes.

8.1 Partition Counts of InnerScalars
Dataflow engines distribute programs across a cluster by partition-

ing bags and the computations that create bags. If a bag is small,

then each partition gets only a few elements, causing a high relative

per-partition overhead that dominates runtime. Thus, it is impor-

tant to set the number of partitions in accordance with the bag’s size.

In general, this is not possible to do for every bag because we know

the size of a bag only once the bag is already fully computed: at this

point, the per-partitioning overhead already occurred. Fortunately,

we can do this for InnerScalars, as we explain below.

We exploit an important observation to track the sizes of

InnerScalars: All InnerScalars inside a lifted UDF have the
same size. Recall that the bags representing InnerScalars con-
sist of (tag, scalar-value) pairs, where the tag is a unique key.

Therefore, the size of these bags depends on the number of different

tags, which is constant across all lifted operations inside a lifted

UDF. This is because tags are in one-to-one correspondence with

calls that would have been made to the original UDF. This means

that all InnerScalars inside a lifted UDF have indeed the same

size, and this size is known at the beginning of a lifted UDF. The

optimizer uses this size information when making decisions about

physical operator implementations, such as partition counts.

We track InnerScalar sizes as follows. Each lifted UDF has an

associated LiftingContext object, which stores some metadata,

such as the InnerScalar size. Operations inside the lifted UDF al-

ways get the LiftingContext as an implicit argument. When the

LiftingContext is created, the InnerScalar size can be deter-

mined in several different ways, depending on whether the current

UDF is of a map whose input argument is a flat or a NestedBag.

8.2 Joins between InnerBags and InnerScalars
Recall from Sec. 5 that the mapWithClosure operation is imple-

mented as a join between the bag representing the InnerBag (the

primary input) and the bag representing the InnerScalar (the

closure). A similar join occurs in the implementation of a lifted

do-while loop (ln. 5 in Listing 4).

To implement these joins, there exist multiple join algorithms

in dataflow engines: A broadcast join is better when one of the

join inputs is small while a repartition join is better when both

inputs are large, and the key cardinality is also large enough. In

many cases, selecting the wrong join implementation results in a

program failing or with more than an order of magnitude worse

performance. Here we again exploit the previously collected infor-

mation about the sizes of InnerScalars to select the right join

implementation. Specifically, we choose a repartition join when

there are enough elements in the InnerScalar to give work to all

CPU cores. Otherwise, we choose a broadcast join.

Note that dataflow engine optimizers can make similar join al-

gorithm choices by themselves in some cases. However, we have

more information here than what is typically available to an engine

optimizer [4]: we know InnerScalar sizes already before they are

computed (which enables, e.g., fusing the join shuffle’s map side

with preceding operations), and we also know that the join key is a

unique key in InnerScalars. We currently use this information as

pr
ep

rin
t

explained above, but in the future it might be also possible to have

a closer integration with a dataflow engine optimizer, such as Cata-

lyst [4]: Instead of directly making the join algorithm choice, we

could give the above information as hints to the engine optimizer.

8.3 Half-lifted MapWithClosure
Recall from Sec. 5, that there exist half-lifted operations in lifted

UDFs, where only one of the inputs comes from inside the UDF,

while the other input comes from outside. One of these operations

that have a half-lifted version is mapWithClosure, with the clo-

sure being an InnerScalar from inside the UDF and the primary

input being a closure of the enclosing UDF. For example, this oc-

curs in K-means, when we compute the new center assignment:

We call mapWithClosure on the bag of points (which does not

change between K-means runs, and is therefore outside the lifted

UDF), with the closure being the current means. In this case, a

mapWithClosure is a cross product between the bag representing

the InnerScalar and the primary input bag.

One can implement this cross by broadcasting one of its inputs.

However, the challenge resides in selectingwhich input to broadcast.

We address this as follows: If the InnerScalar has only 1 partition,

we then broadcast it. This is quick to check, and it is also the

common case due to the optimization in Sec. 8.1. Otherwise, we

use Spark’s SizeEstimator to compare the sizes of the two inputs

and broadcast the smaller one.

9 Evaluation
We carried out several experiments to demonstrate that the per-

formance of our system is consistent across a wide range of input

dataset characteristics. As our work is the first to provide full sup-

port for nested parallelism in dataflow engines, we compare our

system vis-a-vis common practices to run nested-parallel programs

on dataflow engines: namely the inner-parallel and outer-parallel

workarounds. We designed our experiments to answer the follow-

ing questions: How does Matryoshka (i) handle a varying number

of inner computations? (ii) scale with the number of machines?

(iii) handle skewed inner computation sizes? (iv) chooses different

operator implementations to achieve high efficiency?

9.1 Setup
Hardware. We ran our experiments on a cluster of 25 machines:

each with two 8-core AMD Opteron 6128 processors, 32GB main

memory, 4×1 TB hard disks, and 1Gb network.

Dataflow engine.We used Spark-3.0 on OpenJDK 14 and HDFS

2.7.1. We dedicated 22GB memory per machine to Spark processes

and set the Spark parallelism to 3× the total number of cores.

Tasks and Datasets. We considered data analytics tasks from dif-

ferent areas: namely PageRank (graph analytics), Average Distances
(graph analytics), K-means (machine learning), and Bounce Rate
(web analytics). While Bounce Rate and Average Distances are

explained in Sections 2.1 and 2.2, PageRank and K-means are well-

known tasks. To put PageRank at the inner nesting level, we perform

a grouping of the graph edges and compute a separate PageRank

for each group (similarly to the Bounce Rate example). This way,

the program computes many PageRanks in parallel, similarly to

Topic-Sensitive PageRank [24] and BlockRank [27]. Note that K-

means, PageRank, and Bounce Rate have two levels of data-parallel

operations, while Average Distances has three levels. Note that

Bounce Rate does not contain control flow statements while the

other three do. We generated datasets for each task, with sizes

varying between 2 GB – 384 GB.

Baselines. We considered the inner- and outer-parallel work-

arounds as well as DIQL [20] as baselines. However, as DIQL does

not support control flow statements in the inner levels, we only

consider it for the Bounce Rate task.

9.2 Weak Scaling

We start by evaluating scalability in both inner and outer collec-

tion sizes. In detail, we varied two parameters (such as in a weak

scaling experiment): (i) the number of inner computations (outer

scalability), and inversely, (ii) the input sizes of inner computations

inner scalability). We vary these two parameters at the same time

so that the total input dataset size remains constant (e.g., 20 GB

for PageRank) thereby we can better evaluate the impact of nested

parallelism. We, thus, expect the runtime to stay nearly constant.

Figure 3 shows the results for all our iterative tasks, i.e., with con-

trol flow statements (K-means, PageRank, and Average Distances).

We observe that Matryoshka scales gracefully with the number of

inner bags. This is not the case for the two workarounds, whose

performance is heavily affected by the number of inner computa-

tions. Overall, we observe that Matryoshka is highly superior to the

two baselines. It is up to two orders of magnitude faster than outer-

parallel (for K-means) and up to 48× faster than inner-parallel (for

PageRank). More importantly, in the worst case, it achieves similar

performance as both baselines. Specifically, it is similarly good as

inner-parallel for a very low number of inner computations and

similarly good as outer-parallel for a very large number of inner

computations. Surprisingly, our system is a bit faster than inner-

parallel even for a small number of inner computations in case of

PageRank and Average Distances. This is due to the inner-parallel

workaround performing an extra groupBy when the nested bag

is produced by a groupBy, which is the case for PageRank and

AverageDistances but not for K-means. Our technique avoids this

groupBy, as we work on the flat representation. Also note that

our system obtains the best performance compared to baselines for

Average Distances, because this task has three levels of parallelism.

In such cases, outer-parallel can parallelize only the first level while

inner-parallel only the third. Matryoshka can parallelize all levels.

Overall, Matryoshka’s high performance comes from two main

aspects. First, it makes use of parallelization opportunities inside

each inner computation, e.g., inside one K-means run with a certain

starting centroid configuration. Second, the number of Spark jobs

it launches is independent of the number of inner computations,

keeping its overhead low and constant. This is also why it main-

tains its performance close to constant for any number of inner

computations. In contrast, outer-parallel suffers from not fully par-

allelizing inner levels: it brings inner levels into a single machine.

On the other side, inner-parallel suffers from a high total job-launch

overhead, which just gets amplified with iterative tasks.

We also observe that in the sweet spots, i.e., where both baselines

are equally good (at 32 and 64 inner computations), our system is

still at least∼5× and up to 12× faster than both baselines. This shows

that even if users (or an optimizer) could select the best workaround

for a given number of inner computations, they still have significant

drop-downs in performance compared to Matryoshka.

pr
ep

rin
t

R
u
n
t
i
m
e
(
s
)

1 2 4 8 16 32 64 128 256 512

10
3

10
4

10
5

Number of inner computations

Outer-p. Inner-p. Matryoshka

(a) K-means

1 2 4 8 16 32 64 128 256 512

10
3

10
4

Number of inner computations

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

(b) PageRank

4 8 16 32 64 128 256 512

10
3

10
4

Number of inner computations

O
O
M

O
O
M

(c) Average Distances
Figure 3: Scalability in the number and sizes of inner computations.

R
u
n
t
i
m
e
(
s
)

2 4 6 8 10 12 14 16 18 20 22 24
0

2,000

4,000

Number of machines

Outer-p. Inner-p.

Matryoshka

(a) K-means

8 10 12 14 16 18 20 22 24
0

1,000

2,000

Number of machines

(b) PageRank

2 4 6 8 10 12 14 16 18 20 22 24
0

2,000

4,000

6,000

Number of machines

(c) Average Distances
Figure 4: Scalability in the number of machines.

9.3 Scaling Out
We performed an experiment for each task varying the number of

machines. We set the input sizes and number of inner computations

to 64. For each experiment, we start the line from where there is

enough total memory to avoid crashes or extra spilling to disk.

Figure 4 shows the results of this experiment. Overall, we observe

our system scales gracefully while the workarounds do not. With

the maximum number of machines, our system is 5–20× faster than

inner-parallel, and 2–7× faster than outer-parallel. Interestingly,

we observe that our system is close to linear scalability while the

two workarounds remain constant in many cases, i.e., they cannot

benefit from using more machines. The superiority of our system

comes from the same reasons as in the previous experiment: namely

outer-parallel lacks inner-level parallelism and inner-parallel has

a high job-launch overhead. In fact, we observe that the overhead

of inner-parallel just gets worse as we increase the number of

machines because of two main factors: more partitions mean more

(i) scheduling and (ii) task-launch overheads [23, 37]. Matryoshka

does not suffer from any of these problems.

9.4 Performance Without Control Flow
We now evaluate the performance of Matryoshka when a task has

no control flow statements. We repeated the experiments from

Sec. 9.2 and Sec. 9.3 but using the Bounce Rate task, which has no

control flow statements. We considered DIQL as a baseline and 256

inner computations for the scale-out experiment.

Figure 5 shows the results. We observe that the performance of

our system is again nearly constant with respect to the number

of inner computations. In contrast, DIQL and outer-parallel run

out of memory in all the cases and inner-parallel suffers from the

job-launch overhead. Surprisingly, DIQL was not able to flatten this

program: It applied the outer-parallel workaround instead, resulting

in out-of-memory errors. In constrast, our system is up to 5× faster

than inner-parallel. For 4–32 inner computations, inner-parallel

is ∼1.3× faster than Matryoshka. This is because this program is

constrained by memory when the entire input data is processed at

the same time, and hence spilling to disk occurs for Matryoshka.

1 2 4 8 16 32 64 128 256 512

1 · 103
2 · 103
4 · 103

Number of inner computations

R
u
n
t
i
m
e
(
s
) DIQL Outer-p. Inner-p. Matryoshka

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

Figure 5: Bounce Rate (no control flow).

1 2 4 8 16 32 64 128 256 512

10
2

2 · 102
4 · 102
8 · 102

Number of inner computations

R
u
n
t
i
m
e
(
s
)

DIQL

Matryoshka

O
O
M

O
O
M

O
O
M

O
O
M

Figure 6: Performance against DIQL for Bounce Rate.

As DIQL ran out of memory in all cases for 48 GB input, we ran

another experiment with only 12 GB, to be able to compare execu-

tion times. Figure 6 shows the results. We observe that Matryoshka

is faster than DIQL in all cases, by up to 6.6×.

9.5 Data Skew

Bo
un

ceR
ate

Pa
ge
Ra

nk

10
2

10
3

10
4

3
,4
9
0

2
3
,9
7
3

3
1
0

3
3
6

R
u
n
t
i
m
e
(
s
)

Outer-p.

Inner-p.

Matryoshka

O
O
M

O
O
M

Figure 7: Skew.

We evaluate the efficiency of Matryoshka

under data skewness. We created skewed

versions of Bounce Rate and PageRank

by changing the input generation to draw

the grouping keys from a Zipf (instead of

uniform) distribution. This resulted in a

few large groups and many small groups

(1024 in total).

Figure 7 shows the results. We ob-

serve that Matryoshka significantly out-

performs both workarounds. It is 11×–
71× faster than inner-parallel while outer-

parallel always fails with out-of-memory.

This experiment severely hits the already-explained issues of both

workarounds. More interestingly, we observed that our system is

pr
ep

rin
t

10
0

10
4

10
8

10
3

10
4

Number of inner computations

R
u
n
t
i
m
e
(
s
)

Matry.’s selection Br. Repart. Br. scal. Br. bag

10
0

10
3

10
6

10
2

10
3

Number of inner computations

Figure 8: Optimization experiments.

not significantly affected by skew: its run times are within 15% of

running on unskewed data of the same size.

9.6 Optimizations
We also study the efficiency of our optimizations discussed in Sec. 8,

namely InnerBag-InnerScalar Joins and Half-lifted MapWithClosure.
We describe each of these experiments in the following.

InnerBag-InnerScalar Joins. We performed an experiment with

PageRank to evaluate the effectiveness of Matryoshka to select the

right join algorithm (broadcast vs. repartitioned) when varying the

number of inner computations. Figure 8 (left) shows the results.

We observe that Matryoshka’s optimizer is highly effective in se-

lecting the right algorithm at any number of inner computations.

It selects the broadcast join when having a small number of inner

computations and gracefully switches to the repartition join when

having a very big number of inner computations. This prevents our

system to fall into cases where one of the algorithms fails or is more

than an order of magnitude slower than the other. For instance,

the repartition join is up to 15× slower than the broadcast join

when the number of inner computations is small. In contrast, the

broadcast join can be up to 3× slower than the repartitioned join

when the number of inner computations is big. Moreover, at the

end of the plot, the broadcast join fails with an out-of-memory,

because it cannot fit the broadcasted dataset on a single machine.

Half-liftedMapWithClosure.We performed an experiment with

K-means where we tried the different half-lifted mapWithClosure
strategies. We can see in Figure 8 (right) that our optimizer always

makes the optimal choice, which prevents Matryoshka to crash or

to fall into big performance degradations (up to 4.6×).

9.7 Larger Datasets
We also used a larger cluster to run the weak scaling experiment

(Sec. 9.2) with 8× larger input sizes than in the previous exper-

iments. This cluster has 36 machines, each with two Intel Xeon

E5-2630V4 CPUs (40 threads per machine).We gave 100 GBmemory

to each Spark worker. Figure 9 shows the results. Compared to the

inner-parallel workaround, we observed similar speedups in case

of PageRank as in the smaller experiments: Matryoshka gets more

than one order of magnitude faster from 128 inner computations. In

case of Bounce Rate, we observe almost twice as large speedups as in

the smaller experiments: with 512 inner computations Matryoshka

is 8.9× faster than inner-parallel. The outer-parallel workaround

runs out of memory in all cases.

10 Related Work
There are several works on flatenning for handling nested paral-

lelism, especially in the field of compilers [8, 9, 17, 19, 20, 25, 38, 42,

45, 46]. MRQL [19] and DIQL [20] are the closest work to ours: these

1 2 4 8 16 32 64 128 256 512

10
3

2 · 103

4 · 103

8 · 103

Number of inner computations

R
u
n
t
i
m
e
(
s
)

Outer-p.

Inner-p.

Matryoshka

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

killed

killed

killed

(a) PageRank with input size of 160 GB. Inner-parallel was killed
when the run time exceeded 10× of Matryoshka.

1 2 4 8 16 32 64 128 256 512

10
3

2 · 103
4 · 103
8 · 103

Number of inner computations

R
u
n
t
i
m
e
(
s
)

Outer-p.

Inner-p.

Matryoshka

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

(b) Bounce Rate with input size of 384 GB.

Figure 9: Larger total input size.

systems flatten nested-parallel queries and translate them to par-

allel dataflow engines. However, DIQL and MRQL do not support

flattening in the case when there are control flow statements at in-

ner nesting levels, which are common in modern data analysis tasks.

Also, these systems do not perform runtime optimizations, which

is crucial for achieving true flexibility in input data characteristics

as shown by our experiments in Sec. 9.6. Our two-phase flattening

process enables Matryoshka to perform runtime optimizations.

Other works focus on compiling from Haskell by utilizing flat-

tening [17, 38, 45, 46]. Still, Haskell is a purely functional language

and thus these works do not support imperative control flow either.

Henriksen et al. [25] compile from Futhark, a purely functional ar-

ray language allowing for nesting, to parallel GPU code. However,

their work cannot be directly applied to dataflow engines as they

require different abstractions and optimizations. Boehm et al. [13]

introduced a parallel for construct in SystemML [12, 21], which

allows for adding outer levels of task parallelism on top of the data

parallelism of linear algebra operators. Still, as SystemML does not

employ flattening, it can run into the problems of the inner- or

outer-parallel workarounds. Similarly, Ray/RLlib [33, 34] allows for

nested parallelism but does not employ flattening, which requires

users to carefully control parallelization at each level. Katsogridakis

et al. [28] extended Spark to launch Spark jobs from inside Spark

jobs, but their system suffers the same problems as the inner-parallel

workaround. Other works automate the outer-parallel workaround,

but they inherit all its drawbacks [2, 3, 36].

Lastly, data skew handling in large-scale data processing is a

well-studied problem [7, 32, 44], but those works are all orthogonal

to ours: By flattening nested programs, we remove skew problems

that would arise when using the inner- or outer-parallel work-

arounds. Our system could thus benefit from any general data skew

technique in dataflow engines, e.g., Hurricane’s task cloning can

mitigate skew issues in joins or grouped aggregations [7].

pr
ep

rin
t

11 Conclusion
Although modern data analytics tasks often involve nested-parallel

operations, current parallel dataflow engines do not natively sup-

port them. Users, thus, utilize different workarounds that paral-

lelize on only one level, which typically does not yield optimal

performance. We presented Matryoshka, a system that takes nested-

parallel tasks as input and outputs an equivalent flat program,

which can be executed efficiently on an existing dataflow engine.

It frees users from the burden of implementing and choosing be-

tween workarounds. Our experimental evaluation showed that it

provides uniform performance across varying data characteristics,

e.g., (skewed) inner computation sizes. It is up to two orders of

magnitude faster than baselines (the DIQL system as well as the

outer- and inner-parallel workarounds) and achieves nearly linear

scalability. In particular, the results showed that Matryoshka can

flatten programs that DIQL is not able to flatten.

Acknowledgments
We thank Ádám Kunos for advice on some mathematics terminol-

ogy. This work was funded by the German Ministry for Education

and Research as BIFOLD – Berlin Institute for the Foundations of

Learning and Data (ref. 01IS18025A and ref. 01IS18037A).

References
[1] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao,

M. Leich, U. Leser, V. Markl, et al. The Stratosphere platform for big data analytics.

VLDB Journal, 23(6):939–964, 2014.
[2] A. Alexandrov, G. Krastev, and V. Markl. Representations and optimizations for

embedded parallel dataflow languages. ACM Transactions on Database Systems
(TODS), 44(1):4, 2019.

[3] A. Alexandrov, A. Kunft, A. Katsifodimos, F. Schüler, L. Thamsen, O. Kao, T. Herb,

and V. Markl. Implicit parallelism through deep language embedding. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, pages 47–61. ACM, 2015.

[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, et al. Spark SQL: Relational data processing in Spark.

In Proceedings of the 2015 ACM SIGMOD international conference on management
of data, pages 1383–1394. ACM, 2015.

[5] authors anonymized. The power of nested parallelism in big data processing –

hitting three flies with one slap –. Technical report, 2021. [link coming later].

[6] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.

Journal of machine learning research, 13(Feb):281–305, 2012.
[7] L. Bindschaedler, J. Malicevic, N. Schiper, A. Goel, and W. Zwaenepoel. Rock

you like a hurricane: Taming skew in large scale analytics. In Proceedings of the
Thirteenth EuroSys Conference, pages 1–15, 2018.

[8] G. E. Blelloch. Vector models for data-parallel computing, volume 2. MIT press

Cambridge, 1990.

[9] G. E. Blelloch. NESL: a nested data parallel language. Carnegie Mellon Univ.,

1992.

[10] G. E. Blelloch. Programming parallel algorithms. Communications of the ACM,

39(3):85–97, 1996.

[11] C. Boden, A. Spina, T. Rabl, and V. Markl. Benchmarking data flow systems for

scalable machine learning. In Proceedings of the 4th ACM SIGMOD Workshop on
Algorithms and Systems for MapReduce and Beyond, pages 1–10, 2017.

[12] M. Boehm, M. W. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M. Manshadi,

N. Pansare, B. Reinwald, F. R. Reiss, P. Sen, A. C. Surve, et al. SystemML: Declara-

tive machine learning on Spark. Proceedings of the VLDB Endowment, 9(13):1425–
1436, 2016.

[13] M. Boehm, S. Tatikonda, B. Reinwald, P. Sen, Y. Tian, D. R. Burdick, and

S. Vaithyanathan. Hybrid parallelization strategies for large-scale machine learn-

ing in SystemML. Proceedings of the VLDB Endowment, 7(7):553–564, 2014.
[14] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent advances in

graph partitioning. In Algorithm Engineering, pages 117–158. Springer, 2016.
[15] E. Burmako. Scala macros: let our powers combine!: on how rich syntax and

static types work with metaprogramming. In Proceedings of the 4th Workshop on
Scala. ACM, 2013.

[16] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache

flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 36(4), 2015.

[17] M. M. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel. Nepal –

nested data parallelism in Haskell. In European Conference on Parallel Processing,

pages 524–534. Springer, 2001.

[18] T. Desautels, A. Krause, and J. W. Burdick. Parallelizing exploration-exploitation

tradeoffs in gaussian process bandit optimization. Journal of Machine Learning
Research, 15:3873–3923, 2014.

[19] L. Fegaras. An algebra for distributed big data analytics. Journal of Functional
Programming, 27, 2017.

[20] L. Fegaras and M. H. Noor. Compile-time code generation for embedded data-

intensive query languages. In 2018 IEEE International Congress on Big Data
(BigData Congress), pages 1–8. IEEE, 2018.

[21] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,

S. Tatikonda, Y. Tian, and S. Vaithyanathan. SystemML: Declarative machine

learning on MapReduce. In 2011 IEEE 27th International Conference on Data
Engineering, pages 231–242. IEEE, 2011.

[22] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.

GraphX: Graph processing in a distributed dataflow framework. In OSDI, vol-
ume 14, pages 599–613, 2014.

[23] G. E. Gévay, T. Rabl, S. Breß, L. Madai-Tahy, J.-A. Quiané-Ruiz, and V. Markl.

Efficient control flow in dataflow systems: When ease-of-use meets high per-

formance. In IEEE 37th International Conference on Data Engineering (ICDE),
2021.

[24] T. H. Haveliwala. Topic-sensitive PageRank: A context-sensitive ranking al-

gorithm for web search. IEEE transactions on knowledge and data engineering,
15(4):784–796, 2003.

[25] T. Henriksen, F. Thorøe, M. Elsman, and C. Oancea. Incremental flattening for

nested data parallelism. In Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming, pages 53–67, 2019.

[26] K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyper-

parameter optimization. In Artificial Intelligence and Statistics, pages 240–248,
2016.

[27] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Exploiting the block

structure of the web for computing PageRank. Technical report, Stanford, 2003.

[28] P. Katsogridakis, S. Papagiannaki, and P. Pratikakis. Execution of recursive

queries in Apache Spark. In European Conference on Parallel Processing, pages
289–302. Springer, 2017.

[29] A. Kaushik. ‘Bounce Rate’ as the Sexiest Web Metric Ever. http://www.

marketingprofs.com/7/bounce-rate-sexiest-web-metric-ever-kaushik.asp. [On-

line; accessed 29-May-2020].

[30] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J.-A. Quiané-

Ruiz, N. Tang, and S. Yin. BigDansing: A system for big data cleansing. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, pages 1215–1230. ACM, 2015.

[31] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast bayesian optimization

of machine learning hyperparameters on large datasets. In Artificial Intelligence
and Statistics, pages 528–536. PMLR, 2017.

[32] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. SkewTune: mitigating skew in

MapReduce applications. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 25–36, 2012.

[33] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jor-

dan, and I. Stoica. RLlib: Abstractions for distributed reinforcement learning. In

International Conference on Machine Learning, pages 3053–3062, 2018.
[34] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang,

W. Paul, M. I. Jordan, et al. Ray: A distributed framework for emerging AI applica-

tions. In 13th USENIX Symposium onOperating SystemsDesign and Implementation
(OSDI 18), pages 561–577, 2018.

[35] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[36] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: a not-so-

foreign language for data processing. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 1099–1110. ACM, 2008.

[37] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Ratnasamy,

S. Shenker, and I. Stoica. The case for tiny tasks in compute clusters. In Presented
as part of the 14th Workshop on Hot Topics in Operating Systems, 2013.

[38] S. Peyton Jones, R. Leshchinskiy, G. Keller, and M. M. Chakravarty. Harnessing

the multicores: Nested data parallelism in Haskell. In IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2008.

[39] P. Pistor and F. Andersen. Designing a generalized NF2 model with an SQL-type

language interface. In VLDB, volume 86, pages 25–28. Citeseer, 1986.

[40] L. Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1–39,
2010.

[41] D. Sculley, R. G. Malkin, S. Basu, and R. J. Bayardo. Predicting bounce rates

in sponsored search advertisements. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and datamining, pages 1325–1334,
2009.

[42] A. Slesarenko. Lightweight polytypic staging: a new approach to nested data

parallelism in Scala. Scala Days, 2012.
[43] E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I. Jordan, and T. Kraska.

Automating model search for large scale machine learning. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, pages 368–380, 2015.

pr
ep

rin
t

http://www.marketingprofs.com/7/bounce-rate-sexiest-web-metric-ever-kaushik.asp
http://www.marketingprofs.com/7/bounce-rate-sexiest-web-metric-ever-kaushik.asp

[44] Z. Tang, X. Zhang, K. Li, and K. Li. An intermediate data placement algorithm for

load balancing in Spark computing environment. Future Generation Computer
Systems, 78:287–301, 2018.

[45] A. Ulrich. Query Flattening and the Nested Data Parallelism Paradigm. PhD thesis,

Universität Tübingen, 2018.

[46] A. Ulrich and T. Grust. The flatter, the better: Query compilation based on the

flattening transformation. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1421–1426. ACM, 2015.

[47] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan,

A. Ng, B. Liu, S. Y. Philip, et al. Top 10 algorithms in data mining. Knowledge and
information systems, 14(1):1–37, 2008.

[48] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing. In Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation. USENIX Association, 2012.

[49] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster

computing with working sets. HotCloud, 10, 2010.
[50] Large Broadcast Variables. https://issues.apache.org/jira/browse/SPARK-18731.

[Online; accessed 16-June-2020].

[51] Spark GraphX – connected components library function.

https://github.com/apache/spark/blob/branch-3.0/graphx/src/main/scala/org/

apache/spark/graphx/lib/ConnectedComponents.scala#L34, 2013. [Online;

accessed 21-Sep-2020].

[52] Flink Gelly – connected components library function. https://github.com/apache/

flink/blob/2d10acf8189309edc42d57d603887a3431a2ae18/flink-libraries/flink-

gelly/src/main/java/org/apache/flink/graph/library/ConnectedComponents.

java#L45, 2017. [Online; accessed 28-Feb-2020].

pr
ep

rin
t

View publication statsView publication stats

https://issues.apache.org/jira/browse/SPARK-18731
https://github.com/apache/spark/blob/branch-3.0/graphx/src/main/scala/org/apache/spark/graphx/lib/ConnectedComponents.scala#L34
https://github.com/apache/spark/blob/branch-3.0/graphx/src/main/scala/org/apache/spark/graphx/lib/ConnectedComponents.scala#L34
https://github.com/apache/flink/blob/2d10acf8189309edc42d57d603887a3431a2ae18/flink-libraries/flink-gelly/src/main/java/org/apache/flink/graph/library/ConnectedComponents.java#L45
https://github.com/apache/flink/blob/2d10acf8189309edc42d57d603887a3431a2ae18/flink-libraries/flink-gelly/src/main/java/org/apache/flink/graph/library/ConnectedComponents.java#L45
https://github.com/apache/flink/blob/2d10acf8189309edc42d57d603887a3431a2ae18/flink-libraries/flink-gelly/src/main/java/org/apache/flink/graph/library/ConnectedComponents.java#L45
https://github.com/apache/flink/blob/2d10acf8189309edc42d57d603887a3431a2ae18/flink-libraries/flink-gelly/src/main/java/org/apache/flink/graph/library/ConnectedComponents.java#L45
https://www.researchgate.net/publication/350021175

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Bounce Rate
	2.2 Partitioned Graph Analytics
	2.3 Hyperparameter Optimization
	2.4 Other Examples
	2.5 Desiderata

	3 Overview
	4 Flattening
	4.1 Two-Phase Flattening
	4.2 Lifting UDFs
	4.3 InnerScalar
	4.4 InnerBag
	4.5 NestedBag
	4.6 Lifting non-Map UDFs

	5 Dealing with Closures
	5.1 Unlifted UDF Case
	5.2 Lifted UDF Case

	6 Handling Control Flow Statements
	6.1 Control Flow as Higher-Order Functions
	6.2 Lifting Loops and If Statements

	7 Completeness and Correctness
	8 Optimizations
	8.1 Partition Counts of InnerScalars
	8.2 Joins between InnerBags and InnerScalars
	8.3 Half-lifted MapWithClosure

	9 Evaluation
	9.1 Setup
	9.2 Weak Scaling
	9.3 Scaling Out
	9.4 Performance Without Control Flow
	9.5 Data Skew
	9.6 Optimizations
	9.7 Larger Datasets

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

